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I. The Bures-Wasserstein Space



Let K denote the set of real, symmetric, matrices in a fixed dimension.

Many statistical problems feature data or parameters living in K:

▶ Covariance estimation

▶ ANOVA

▶ Diffusion tensor imaging

▶ Quantum information theory

▶ Coase grain DNA modeling



It is usually not natural to endow K with the geometry it inherits from
the ambient Euclidean space.

Instead, there are many metrics on K with a more interesting
geometry. One can set the distance between Σ and Σ′ to be:

▶ ℓp norm: ∥Σ− Σ′∥p
▶ ℓp → ℓq operator norm: ∥Σ− Σ′∥p→q

▶ log-Euclidean metric: ∥ log(Σ)− log(Σ′)∥2
▶ log-Riemannian metric: ∥ log(Σ−1/2Σ′Σ−1/2)∥2
▶ Stein’s loss: tr(Σ′Σ−1)− log det(Σ′Σ−1)−m

▶ Bures-Wasserstein metric...

Also many more possiblilities (Dryden-Kolyodenko-Zhou 2009,
Pigoli-Aston-Dryden-Secchi 2014).



The Bures-Wasserstein metric is a metric Π on K has many equivalent
formulations, and has been independently studied in several
application areas (Masarotto-Panaretos-Zemel 2020):

Π(Σ,Σ′) :=

√
tr(Σ) + tr(Σ′)− 2tr

((
Σ1/2Σ′Σ1/2

)1/2)
= min

U⊤U=I
∥UΣ

1/2 − (Σ′)
1/2∥2

= W2(N (0,Σ),N (0,Σ′))



The Bures-Wasserstein space (K,Π) has a rich geometry:

▶ It is uniquely geodesic,

▶ It has non-negative (Alexandrov) curvature,

▶ It is a “stratified space”,

K

Σ′

Σ



II. Bures-Wasserstein Barycenters



For a sufficiently integrable probability measure P ∈ P(K), a
Bures-Wasserstein barycenter is a solution of the optimization problem{

minimize
´
KΠ2(M,Σ)dP (Σ)

over M ∈ K.

Barycenters are also called Fréchet means or centers of mass, and they
represent a canonical notion of central tendency in (K,Π).

Recall that in the Euclidean space (Rd, ∥ · ∥2) when P ∈ P(Rd) has
finite variance, the optimization problem{

minimize
´
Rd ∥m− s∥2dP (s)

over m ∈ Rd.

is uniquely solved at the mean m =
´
Rd sdP (s).



It is known (Knott-Smith 1984, Agueh-Carlier 2011) that M ≻ 0 is a
Bures-Wasserstein barycenter of P if and only if it satisfies

ˆ
K

(
M

1/2ΣM
1/2
)1/2

dP (Σ) = M,

called the fixed-point equation.
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Let P ∈ P(K) be an unknown sufficiently integrable probability
measure, and let Σ1,Σ2, . . . be independent, identically distributed
(IID) samples from P .

Write M∗
n for the empirical Bures-Wasserstein barycenter

M∗
n := argmin

M∈K

1

n

n∑
i=1

Π2(M,Σi)

and M∗ for the population Bures-Wasserstein barycenter

M∗ := argmin
M∈K

ˆ
K
Π2(M,Σ)dP (Σ).

How well does M∗
n approximate M∗?



Much is known:

▶ SLLN: Π(M∗
n,M

∗) → 0 almost surely as n → ∞, from general
theory of optimal transport (Le Gouic-Loubes 2017) or general
theory of Fréchet means (Evans-Jaffe 2024).

▶ CLT:
√
n
(
(M∗)1/2M∗

n(M
∗)1/2

)1/2 → N (M∗, G) in distribution as
n → ∞ for some G depending on P (Agueh-Carlier 2017).

▶ rate of convergence: E
[
Π2(M∗

n,M
∗)
]
≲ σ2n−1 for some σ2

depending on P (Le Gouic-Paris-Rigollet-Stromme 2023).

▶ concentration: For some c1, c2 > 0 depending on P ,

P
(
Π(M∗

n,M
∗) ≥ t

)
≤ c1e

−c2nt2

for all t ≥ 0 (Kroshnin-Spokoiny-Suvorikova 2021).



III. The Large Deviations Principle



For P ∈ P(K) and M ∈ K, set

IP (M) := sup
A∈S

(
tr(AM)− log

ˆ
K
exp tr

(
AMΣ

1/2(Σ
1/2MΣ

1/2)−
1/2Σ

1/2
)
dP (Σ)

)
where S denotes the set of all real, symmetric matrices.

Note this is sort of like a Fenchel-Legendre transform, but not quite.



Theorem (AQJ-Santoro, 2024+)

The function IP : K → [0,∞] enjoys the following properties:

(a) IP (M) = 0 if and only if M = M∗.

(b) IP is lower semi-continuous.

(c) IP is coercive and satisfies IP (M)/Π(M, 0) → ∞ as M → ∞.

(d) IP is convex along certain continuous paths in (K,Π).

Theorem (AQJ-Santoro, 2024+)

For all Borel measurable E ⊆ K, we have

− inf {IP (M) : M ∈ E◦}

≤ lim inf
n→∞

1

n
logP(M∗

n ∈ E)

≤ lim sup
n→∞

1

n
logP(M∗

n ∈ E)

≤ − inf
{
IP (M) : M ∈ Ē

}
,

where E◦ and Ē denote the interior and closure of E with respect to Π.



If E ⊆ K is equal to the closure of its interior, then

lim
n→∞

1

n
logP(M∗

n ∈ E) = − inf {IP (M) : M ∈ E} ,

which is like a sort of duality between probability theory and
optimization theory. Roughly speaking, the above can be interpreted as

P(M∗
n ∈ E) ≈ exp(−n · inf {IP (M) : M ∈ E}),

after ignoring sub-exponential factors.



The core of the proofs is the following duality:

Lemma (AQJ-Santoro, 2024+)

For each M ∈ K, the optimization problems{
maximize tr(AM)− log

´
K exp tr

(
AMΣ1/2(Σ1/2MΣ1/2)−1/2Σ1/2

)
dP (Σ)

over A ∈ S

and 
minimize H(Q |P )

over Q ∈ P2(K)

where Q has barycenter M

have the same value and admit at most one optimizer; furthermore,
feasible points A ∈ S and Q ∈ P2(K) are optimal if and only if they
satisfy Q = PM→A, where

dPM→A

dP
(Σ) ∝ exp

(
AMΣ

1/2(Σ
1/2MΣ

1/2)−
1/2Σ

1/2
)
. (1)
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Wasserstein barycenters? For P ∈ P(P(Rd)), let ν1, ν2, . . . be
independent, identically-distributed from P , and consider the empirical
and population Wasserstein barycenters µ∗

n and µ∗. Many limit
theorems for µ∗

n → µ∗ in W2 are known (SLLN, rates of convergence,
etc.).

Formally, we expect that {µ∗
n}n∈N satisfies a large deviations principle

in (P(Rd),W2) with good rate function

IP (µ) = sup
ϕ∈L2(µ)

(
⟨ϕ, id⟩L2(µ) − log

ˆ
P(Rd)

exp
〈
ϕ, tνµ

〉
L2(µ)

dP (ν)

)
,

where tνµ : Rd → Rd denotes the optimal transport map from µ to ν.

Need to use the Otto calculus (Otto 2001) to make this rigorous...



IV. Concentration of Measure



All of stated results in fact hold in infinite dimensions, meaning K is
the space of real, symmetric, trace-class operators on an
infinite-dimensional Hilbert space H.

So, it is hopeful to try to use these results to study the concentration
of measure phenomenon for Bures-Wasserstein barycenters, which aims
to develop dimension-free concentration properties of the empirical
barycenter around the population barycenter.

Suppose that if Σ is distributed according to P , then Π(Σ, 0) has a
σ2-sub-Gaussian distribuion.



Corollary

For any r ≥ 0, we have existence of the limit

ΦP (r) := − lim
n→∞

1

n
logP(Π(M∗

n,M
∗) ≥ r),

and the function ΦP : [0,∞) → [0,∞] satisfies

lim inf
r→∞

ΦP (r)

r2
≥ 1

2σ2
. (2)

In other words, we have P(Π(M∗
n,M

∗) ≥ r) ≲ exp(− r2

2σ2 ) for large
r > 0, where we ignore sub-exponential factors in n ∈ N. Note that this
is exactly the Hoeffding-style concentration, and that there is no
dependence on the dimension!



Corollary

If r > 0, then, we have

lim sup
n→∞

1

n
logP

(
Π(M∗

n,M
∗) ≥ r + ε

∣∣∣Π(M∗
n,M

∗) ≥ r
)
< 0

for all ε > 0

In other words, if Π(M∗
n,M

∗) ≥ r, then Π(M∗
n,M

∗) ≈ r with high
probability. This means that M∗

n lies outside the ball Br(M
∗) only if it

lies near the boundary of Br(M
∗).



V. Future Work



Applications:

▶ Bounding the asymptotic relative efficiency (ARE) for hypothesis
tests based on Bures-Wasserstein barycenters

▶ Rare event simulation for Bures-Wasserstein barycenters

Extensions to other spaces:

▶ The Wasserstein space

▶ General Riemannian manifolds

Numerical optimization of IP :

▶ Geodesic convexity

▶ Eigenvalues of ∇2
MIP



Thank you!
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