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I. The Bures-Wasserstein Space



Let K denote the set of real, symmetric, matrices in a fixed dimension.

Many statistical problems feature data or parameters living in K:
» Covariance estimation
» ANOVA

» Diffusion tensor imaging

» Quantum information theory
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Coase grain DNA modeling



It is usually not natural to endow K with the geometry it inherits from
the ambient Euclidean space.

Instead, there are many metrics on K with a more interesting
geometry. One can set the distance between ¥ and ¥’ to be:

» (, norm: || — X[,

» (, — Ly operator norm: ||X —X'||p—q

» log-Euclidean metric: ||log(X) — log(X')]|2

» log-Riemannian metric: ||log(X~'/%/%="2)]|
» Stein’s loss: tr(X'Y71) —logdet(X'Y71) —m
» Bures- Wasserstein metric...

Also many more possiblilities



The Bures-Wasserstein metric is a metric II on K has many equivalent
formulations, and has been independently studied in several
application areas

(s, x) = \/tr(E) + tr(X) — 2tr ((21/22/21/2)1/2>

= min |USY2 — ()"
UTu=I

= Wa(N(0,%), N (0, %))



The Bures- Wasserstein space (K,II) has a rich geometry:
» It is uniquely geodesic,
» It has non-negative (Alexandrov) curvature,

» It is a “stratified space”,




II. Bures-Wasserstein Barycenters



For a sufficiently integrable probability measure P € P(K), a
Bures-Wasserstein barycenter is a solution of the optimization problem

minimize [ II*(M, X)dP (%)
over M e K.

Barycenters are also called Fréchet means or centers of mass, and they
represent a canonical notion of central tendency in (K, ITI).

Recall that in the Euclidean space (R?, || - ||2) when P € P(R?) has
finite variance, the optimization problem

minimize [pq [|m — s[|*dP(s)
over m € R4

is uniquely solved at the mean m = [, s dP(s).



It is known that M > 0 is a
Bures-Wasserstein barycenter of P if and only if it satisfies

1 1 1/2
/ (M LM /2) dP(%) = M,
K

called the fized-point equation.
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Let P € P(K) be an unknown sufficiently integrable probability
measure, and let X1, 39, ... be independent, identically distributed
(IID) samples from P.

Write M, for the empirical Bures- Wasserstein barycenter

1 n
M’ = argmin— Y II?(M,%;
n MeK n; ( Z)

and M™* for the population Bures-Wasserstein barycenter

M* := arg min / 1%(M, X)dP(%).
MeK K

How well does M, approximate M*?



Much is known:

» SLLN: II(M}, M*) — 0 almost surely as n — oo, from general
theory of optimal transport or general
theory of Fréchet means .

> CLT: /n ((M*)"/2M:(M*)'2)"* = N (M*,G) in distribution as
n — oo for some G depending on P

> rate of convergence: E [II?(M;, M*)] < o?n~! for some o2

depending on P

» concentration: For some c1,cy > 0 depending on P,
P(H(M;,M*) > t) < cre @’

forallt >0



I1I. The Large Deviations Principle



For P € P(K) and M € K, set

Ip(M) := sup <tr(AM) - log/

exp tr (AMEW(21/2M21/2)*1/221/2) dP(E))
A€S K

where S denotes the set of all real, symmetric matrices.

Note this is sort of like a Fenchel-Legendre transform, but not quite.



Theorem (AQJ-Santoro, 2024+ )

The function Ip : K — [0, 00] enjoys the following properties:

(a) Ip(M) =0 if and only if M = M*.

(b) Ip is lower semi-continuous.

(¢) Ip is coercive and satisfies Ip(M)/II(M,0) — oo as M — oo.
)

(d) Ip is convex along certain continuous paths in (K, II).

Theorem (AQJ-Santoro, 2024+ )

For all Borel measurable E C K, we have
—inf{Ip(M): M € E°}
1
< liminf —log P(M,, € E)

n—oo n

1
<limsup —logP(M,, € E)
n

n—oo

< —inf {Ip(M): M € E},

where E° and E denote the interior and closure of E with respect to II.



If F C K is equal to the closure of its interior, then

1
lim —logP(M, € E) = —inf{Ip(M): M € E},

n—o0 N

which is like a sort of duality between probability theory and
optimization theory. Roughly speaking, the above can be interpreted as

P(M} € E) =~ exp(—n -inf {Ip(M) : M € E}),

after ignoring sub-exponential factors.



The core of the proofs is the following duality:

Lemma (AQJ-Santoro, 2024+)
For each M € K, the optimization problems

maximize tr(AM) —log [ exptr (AME'2(S2ME2)~2812) dP(S)
over AeS

and

minimize H(Q|P)

over Q € P2(K)

where Q@ has barycenter M
have the same value and admit at most one optimizer; furthermore,
feasible points A € S and Q € Py(K) are optimal if and only if they
satisfy Q = PM=4 where

dPM—)A

—— (%) x exp (AMEW(21/2M21/2)*1/221/2) . (1)
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Wasserstein barycenters? For P € P(P(R?)), let vy, 10,... be
independent, identically-distributed from P, and consider the empirical
and population Wasserstein barycenters p and p*. Many limit
theorems for u) — p* in Wy are known (SLLN, rates of convergence,
etc.).

Formally, we expect that {1} }nen satisfies a large deviations principle
n (P(R%), Wy) with good rate function

IP(M) = Sup <d)7 1d> - IOg/ exp (bv t dP(V> )
0 L2 () P(RY) < M>L2(,u)

peL?(
where ¢, : R? — R? denotes the optimal transport map from p to v.

Need to use the Otto calculus to make this rigorous...



IV. Concentration of Measure



All of stated results in fact hold in infinite dimensions, meaning K is
the space of real, symmetric, trace-class operators on an
infinite-dimensional Hilbert space H.

So, it is hopeful to try to use these results to study the concentration
of measure phenomenon for Bures-Wasserstein barycenters, which aims
to develop dimension-free concentration properties of the empirical
barycenter around the population barycenter.

Suppose that if ¥ is distributed according to P, then II(X,0) has a
o?-sub-Gaussian distribuion.



Corollary

For any r > 0, we have existence of the limit

1
Dp(r) =~ lim — log P(II(M;, M") > ),

n—,oo N

and the function ®p : [0,00) — [0, 00] satisfies

. . @p(?“) 1
liminf —— > 257" (2)

r—00 T

In other words, we have P(II(M,;, M*) > r) < exp(—5 ) for large

r > 0, where we ignore sub-exponential factors in n G N. Note that this
is exactly the Hoeffding-style concentration, and that there is no
dependence on the dimension!



Corollary
If r > 0, then, we have

1
limsup = log P (TI(M;, M) = 7+ £ | TI(M;;, M*) > 1) < 0

n—oo N

foralle >0

In other words, if II(M5, M*) > r, then II(M;, M*) ~ r with high
probability. This means that M lies outside the ball B,(M™*) only if it
lies near the boundary of B, (M¥).



V. Future Work



Applications:

» Bounding the asymptotic relative efficiency (ARE) for hypothesis
tests based on Bures-Wasserstein barycenters

> Rare event simulation for Bures-Wasserstein barycenters

Extensions to other spaces:
» The Wasserstein space

» General Riemannian manifolds

Numerical optimization of Ip:
> Geodesic convexity

> Eigenvalues of V?WI P



Thank you!
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