Large Deviations Principle for Bures-Wasserstein Barycenters

Adam Quinn Jaffe

With Leonardo Santoro

- I. The Bures-Wasserstein Space
- **II.** Bures-Wasserstein Barycenters
- III. The Large Deviations Principle

- IV. Concentration of Measure
 - V. Future Work

I. The Bures-Wasserstein Space

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathbbm{K} denote the set of real, symmetric, matrices in a fixed dimension.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Many statistical problems feature data or parameters living in $\mathbb{K}:$

- ► Covariance estimation
- ► ANOVA
- ► Diffusion tensor imaging
- ► Quantum information theory
- ► Coase grain DNA modeling

It is usually *not* natural to endow \mathbb{K} with the geometry it inherits from the ambient Euclidean space.

Instead, there are many metrics on \mathbb{K} with a more interesting geometry. One can set the distance between Σ and Σ' to be:

$$\blacktriangleright \ell_p \text{ norm: } \|\Sigma - \Sigma'\|_p$$

•
$$\ell_p \to \ell_q$$
 operator norm: $\|\Sigma - \Sigma'\|_{p \to q}$

- ► log-Euclidean metric: $\|\log(\Sigma) \log(\Sigma')\|_2$
- ► log-Riemannian metric: $\|\log(\Sigma^{-1/2}\Sigma'\Sigma^{-1/2})\|_2$
- ► Stein's loss: $tr(\Sigma'\Sigma^{-1}) log det(\Sigma'\Sigma^{-1}) m$
- ► Bures-Wasserstein metric...

Also many more possiblilities (Dryden-Kolyodenko-Zhou 2009, Pigoli-Aston-Dryden-Secchi 2014).

うして ふゆ とう かんし とう うくしゃ

The Bures-Wasserstein metric is a metric Π on \mathbb{K} has many equivalent formulations, and has been independently studied in several application areas (Masarotto-Panaretos-Zemel 2020):

$$\Pi(\Sigma, \Sigma') := \sqrt{\operatorname{tr}(\Sigma) + \operatorname{tr}(\Sigma') - 2\operatorname{tr}\left(\left(\Sigma^{1/2}\Sigma'\Sigma^{1/2}\right)^{1/2}\right)}$$
$$= \min_{U^{\top}U=I} \|U\Sigma^{1/2} - (\Sigma')^{1/2}\|_{2}$$
$$= W_{2}(\mathcal{N}(0, \Sigma), \mathcal{N}(0, \Sigma'))$$

イロト (日下 (日下 (日下)))

The Bures-Wasserstein space (\mathbb{K}, Π) has a rich geometry:

- ► It is uniquely geodesic,
- ▶ It has non-negative (Alexandrov) curvature,
- ▶ It is a "stratified space",

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

II. Bures-Wasserstein Barycenters

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a sufficiently integrable probability measure $P \in \mathcal{P}(\mathbb{K})$, a *Bures-Wasserstein barycenter* is a solution of the optimization problem

$$\begin{cases} \text{minimize} & \int_{\mathbb{K}} \Pi^2(M, \Sigma) \mathrm{d}P(\Sigma) \\ \text{over} & M \in \mathbb{K}. \end{cases}$$

Barycenters are also called *Fréchet means* or *centers of mass*, and they represent a canonical notion of central tendency in (\mathbb{K}, Π) .

Recall that in the Euclidean space $(\mathbb{R}^d, \|\cdot\|_2)$ when $P \in \mathcal{P}(\mathbb{R}^d)$ has finite variance, the optimization problem

$$\begin{cases} \text{minimize} \quad \int_{\mathbb{R}^d} \|m - s\|^2 \mathrm{d}P(s) \\ \text{over} \qquad m \in \mathbb{R}^d. \end{cases}$$

- ロ ト - 4 回 ト - 4 □

is uniquely solved at the mean $m = \int_{\mathbb{R}^d} s \, \mathrm{d} P(s)$.

$$\int_{\mathbb{K}} \left(M^{1/2} \Sigma M^{1/2} \right)^{1/2} \mathrm{d}P(\Sigma) = M,$$

called the *fixed-point equation*.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$\int_{\mathbb{K}} \left(M^{1/2} \Sigma M^{1/2} \right)^{1/2} \mathrm{d}P(\Sigma) = M,$$

called the *fixed-point equation*.

$$\int_{\mathbb{K}} \left(M^{1/2} \Sigma M^{1/2} \right)^{1/2} \mathrm{d}P(\Sigma) = M,$$

called the *fixed-point equation*.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$\int_{\mathbb{K}} \left(M^{1/2} \Sigma M^{1/2} \right)^{1/2} \mathrm{d}P(\Sigma) = M,$$

called the *fixed-point equation*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ● ●

$$\int_{\mathbb{K}} \left(M^{1/2} \Sigma M^{1/2} \right)^{1/2} \mathrm{d}P(\Sigma) = M,$$

called the *fixed-point equation*.

Let $P \in \mathcal{P}(\mathbb{K})$ be an unknown sufficiently integrable probability measure, and let $\Sigma_1, \Sigma_2, \ldots$ be independent, identically distributed (IID) samples from P.

Write M_n^* for the empirical Bures-Wasserstein barycenter

$$M_n^* := \operatorname*{arg\,min}_{M \in \mathbb{K}} \frac{1}{n} \sum_{i=1}^n \Pi^2(M, \Sigma_i)$$

and M^* for the population Bures-Wasserstein barycenter

$$M^* := \underset{M \in \mathbb{K}}{\operatorname{arg\,min}} \int_{\mathbb{K}} \Pi^2(M, \Sigma) \mathrm{d}P(\Sigma).$$

How well does M_n^* approximate M^* ?

Much is known:

- ▶ SLLN: $\Pi(M_n^*, M^*) \to 0$ almost surely as $n \to \infty$, from general theory of optimal transport (Le Gouic-Loubes 2017) or general theory of Fréchet means (Evans-Jaffe 2024).
- ▶ **CLT:** $\sqrt{n} \left((M^*)^{1/2} M_n^* (M^*)^{1/2} \right)^{1/2} \to \mathcal{N}(M^*, G)$ in distribution as $n \to \infty$ for some *G* depending on *P* (Agueh-Carlier 2017).
- ▶ rate of convergence: $\mathbb{E}\left[\Pi^2(M_n^*, M^*)\right] \lesssim \sigma^2 n^{-1}$ for some σ^2 depending on P (Le Gouic-Paris-Rigollet-Stromme 2023).
- concentration: For some $c_1, c_2 > 0$ depending on P,

$$\mathbb{P}\Big(\Pi(M_n^*, M^*) \ge t\Big) \le c_1 e^{-c_2 n t^2}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for all $t \ge 0$ (Kroshnin-Spokoiny-Suvorikova 2021).

III. The Large Deviations Principle

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $P \in \mathcal{P}(\mathbb{K})$ and $M \in \mathbb{K}$, set

$$I_P(M) := \sup_{A \in \mathbb{S}} \left(\operatorname{tr}(AM) - \log \int_{\mathbb{K}} \exp \operatorname{tr} \left(AM \Sigma^{1/2} (\Sigma^{1/2} M \Sigma^{1/2})^{-1/2} \Sigma^{1/2} \right) \mathrm{d}P(\Sigma) \right)$$

where \mathbb{S} denotes the set of all real, symmetric matrices.

Note this is sort of like a Fenchel-Legendre transform, but not quite.

Theorem (AQJ-Santoro, 2024+)

The function $I_P : \mathbb{K} \to [0, \infty]$ enjoys the following properties:

- (a) $I_P(M) = 0$ if and only if $M = M^*$.
- (b) I_P is lower semi-continuous.
- (c) I_P is coercive and satisfies $I_P(M)/\Pi(M,0) \to \infty$ as $M \to \infty$.

(d) I_P is convex along certain continuous paths in (\mathbb{K}, Π) .

Theorem (AQJ-Santoro, 2024+)

For all Borel measurable $E \subseteq \mathbb{K}$, we have

$$-\inf \left\{ I_P(M) : M \in E^{\circ} \right\}$$

$$\leq \liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(M_n^* \in E)$$

$$\leq \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(M_n^* \in E)$$

$$\leq -\inf \left\{ I_P(M) : M \in \bar{E} \right\},$$

where E° and \overline{E} denote the interior and closure of E with respect to Π .

If $E \subseteq \mathbb{K}$ is equal to the closure of its interior, then

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(M_n^* \in E) = -\inf \left\{ I_P(M) : M \in E \right\},\$$

which is like a sort of duality between probability theory and optimization theory. Roughly speaking, the above can be interpreted as

$$\mathbb{P}(M_n^* \in E) \approx \exp(-n \cdot \inf \{I_P(M) : M \in E\}),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

after ignoring sub-exponential factors.

The core of the proofs is the following duality:

Lemma (AQJ-Santoro, 2024+)

For each $M \in \mathbb{K}$, the optimization problems

 $\begin{cases} \text{maximize} & \operatorname{tr}(AM) - \log \int_{\mathbb{K}} \exp \operatorname{tr} \left(AM \Sigma^{1/2} (\Sigma^{1/2} M \Sigma^{1/2})^{-1/2} \Sigma^{1/2} \right) \mathrm{d}P(\Sigma) \\ \text{over} & A \in \mathbb{S} \end{cases}$

and

$$\begin{cases} \text{minimize} & H(Q \mid P) \\ \text{over} & Q \in \mathcal{P}_2(\mathbb{K}) \\ \text{where} & Q \text{ has barycenter } M \end{cases}$$

have the same value and admit at most one optimizer; furthermore, feasible points $A \in \mathbb{S}$ and $Q \in \mathcal{P}_2(\mathbb{K})$ are optimal if and only if they satisfy $Q = P^{M \to A}$, where

$$\frac{\mathrm{d}P^{M\to A}}{\mathrm{d}P}(\Sigma) \propto \exp\left(AM\Sigma^{1/2}(\Sigma^{1/2}M\Sigma^{1/2})^{-1/2}\Sigma^{1/2}\right).$$
 (1)

4 日 > 4 日 > 4 三 > 4 三 > 三 - うへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

・ロト <
日 > <
三 > <
三 ・ <
、 > へ
こ ・ <
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い
、 > へ
い

4 日 > 4 日 > 4 目 > 4 目 > 目 の へ ()

Wasserstein barycenters? For $P \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$, let ν_1, ν_2, \ldots be independent, identically-distributed from P, and consider the empirical and population Wasserstein barycenters μ_n^* and μ^* . Many limit theorems for $\mu_n^* \to \mu^*$ in W_2 are known (SLLN, rates of convergence, etc.).

Formally, we expect that $\{\mu_n^*\}_{n \in \mathbb{N}}$ satisfies a large deviations principle in $(\mathcal{P}(\mathbb{R}^d), W_2)$ with good rate function

$$I_P(\mu) = \sup_{\phi \in L^2(\mu)} \left(\langle \phi, \mathrm{id} \rangle_{L^2(\mu)} - \log \int_{\mathcal{P}(\mathbb{R}^d)} \exp \left\langle \phi, t_{\mu}^{\nu} \right\rangle_{L^2(\mu)} \mathrm{d}P(\nu) \right),$$

where $t^{\nu}_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ denotes the optimal transport map from μ to ν .

Need to use the Otto calculus (Otto 2001) to make this rigorous...

IV. Concentration of Measure

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All of stated results in fact hold in infinite dimensions, meaning \mathbb{K} is the space of real, symmetric, *trace-class* operators on an infinite-dimensional Hilbert space \mathcal{H} .

So, it is hopeful to try to use these results to study the concentration of measure phenomenon for Bures-Wasserstein barycenters, which aims to develop dimension-free concentration properties of the empirical barycenter around the population barycenter.

Suppose that if Σ is distributed according to P, then $\Pi(\Sigma, 0)$ has a σ^2 -sub-Gaussian distribution.

Corollary

For any $r \geq 0$, we have existence of the limit

$$\Phi_P(r) := -\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\Pi(M_n^*, M^*) \ge r),$$

and the function $\Phi_P: [0,\infty) \to [0,\infty]$ satisfies

$$\liminf_{r \to \infty} \frac{\Phi_P(r)}{r^2} \ge \frac{1}{2\sigma^2}.$$
(2)

In other words, we have $\mathbb{P}(\Pi(M_n^*, M^*) \ge r) \le \exp(-\frac{r^2}{2\sigma^2})$ for large r > 0, where we ignore sub-exponential factors in $n \in \mathbb{N}$. Note that this is exactly the Hoeffding-style concentration, and that there is no dependence on the dimension!

Corollary If r > 0, then, we have

for

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P} \left(\Pi(M_n^*, M^*) \ge r + \varepsilon \, \Big| \, \Pi(M_n^*, M^*) \ge r \right) < 0$$

all $\varepsilon > 0$

In other words, if $\Pi(M_n^*, M^*) \geq r$, then $\Pi(M_n^*, M^*) \approx r$ with high probability. This means that M_n^* lies outside the ball $B_r(M^*)$ only if it lies near the boundary of $B_r(M^*)$.

V. Future Work

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications:

▶ Bounding the asymptotic relative efficiency (ARE) for hypothesis tests based on Bures-Wasserstein barycenters

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Rare event simulation for Bures-Wasserstein barycenters

Extensions to other spaces:

- ► The Wasserstein space
- ▶ General Riemannian manifolds

Numerical optimization of I_P :

- ► Geodesic convexity
- ▶ Eigenvalues of $\nabla^2_M I_P$

Thank you!

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへの

References

M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43:904-924, 2011.

M. Agueh and G. Carlier. Vers un théorème de la limite centrale dans l'espace de Wasserstein? C. R. Math. Acad. Sci. Paris., 355(7):812-818, 2017.

I. L. Dryden, A. Kolyodenko, and D. Zhou. Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. *Ann. Appl. Statist.*, 3:1102-1123, 2009.

S. N. Evans and A. Q. Jaffe. Limit theorems for Fréchet mean sets. Bernoulli, 30(1):419-447, 2024.

M. Knott and C. S. Smith. On the optimal mapping of distributions. J. Optim. Theory Appl., 43:39-49, 1984.

A. Kroshnin, V. Spokoiny, and A. Suvorikova. Statistical inference for Bures-Wasserstein barycenters. Ann. Appl. Probab., 31:1264-1298, 2021.

T. Le Gouic and J.-M. Loubes. Existence and consistency of Wasserstein barycenters. Probab. Theory Related Fields, 168:901-917, 2017.

T. Le Gouic, Q. Paris, P. Rigollet, and A. J. Stromme. Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space. J. Eur. Math. Soc., 24:2229-2250, 2023.

V. Masarotto, V. M. Panaretos, and Y. Zemel. Procrustes metrics on covariance operators and optimal transportation of Gaussian processes. *Sankhya A*, 81:172-213.

V. M. Panaretos and Y. Zemel. Invitation to Statistics in Wasserstein Space, Springer Briefs in Probability and Mathematical Statistics, 2020.

F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26(1-2):101-174, 2001.

D. Pigoli, J. A. Aston, I. L. Dryden, and P. Secchi. Distance and inference for covariance operators. *Biometrika*, 101:409-422, 2014.

Y. Zemel and V. M. Panaretos. Fréchet means and Procrustes analysis in the Wasserstein space. Bernoulli, 25:932-976, 2019.