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I. Stochastic processes



Theorem (Ernst-Kendall-Roberts-Rosenthal, 2019)

For any ✓1, ✓2 2 R, one can construct a probability space supporting

I a Brownian motion B✓1 = {B✓1
t }t�0 with drift ✓1,

I a Brownian motion B✓2 = {B✓2
t }t�0 with drift ✓2, and

I a random time T with T > 0 almost surely,

such that B✓1
t = B✓2

t for all 0  t  T almost surely.
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In words:

I BM with drift “starts out as” a BM without drift.

I BMs with drift are all “locally equivalent” at time zero.

I The drift of a BM cannot be detected, if it is only observed up to
an adversarially-chosen time.

Explicit construction based on Itô excursion theory.



Definition

Say that a pair of Borel probability measures (P, P 0) on D([0,1);R)
has the germ coupling property (GCP) if one can construct a
probability space supporting

I a stochastic process X = {Xt}t�0 with law P ,

I a stochastic process X 0 = {X 0
t}t�0 with law P 0, and

I a random time T with T > 0 almost surely,

such that Xt = X 0
t for all 0  t  T almost surely.

Know that (W ✓1 ,W ✓2) has the GCP for all ✓1, ✓2 2 R, where W ✓

denotes the law of BM with drift ✓ 2 R.

Say P has the Brownian GCP if (P,W 0) has the GCP.

Which other pairs have the GCP?



II. Some vignettes



I ⌦ a Polish space,

I � := {(x, x) 2 ⌦⇥ ⌦ : x 2 ⌦} the diagonal in ⌦⇥ ⌦,

I P, P 0 two Borel probability measures on ⌦, and

I ⇧(P, P 0) the space of all couplings of P and P 0.

Then (folklore):

sup
A2B(⌦)

��P (A)� P 0(A)
�� = min

P̃2⇧(P,P 0)
(1� P̃ (�)).
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I ⌦ a Polish space,

I � := {(x, x) 2 ⌦⇥ ⌦ : x 2 ⌦} the diagonal in ⌦⇥ ⌦,

I P, P 0 two Borel probability measures on ⌦, and

I ⇧(P, P 0) the space of all couplings of P and P 0.

Then (folklore):

sup
A2B(⌦)

��P (A)� P 0(A)
�� = min

P̃2⇧(P,P 0)
(1� P̃ (�)).



I ⌦ := SN the space of sequences for a finite set S,

I E0 :=
S

n2N{(x, x0) 2 ⌦⇥ ⌦ : (xn, xn+1, . . .) = (x0n, x
0
n+1, . . .)} the

equivalence relation of eventual equality,

I T :=
T

n2N �(xn, xn+1, . . .) the tail �-algebra,

I P, P 0 two Borel probability measures on ⌦, and

I ⇧(P, P 0) the space of all couplings of P and P 0.

Then (Gri↵eath 1974, Pitman 1976, Goldstein 1978):

sup
A2T

��P (A)� P 0(A)
�� = 0 if and only if min

P̃2⇧(P,P 0)
(1� P̃ (E0)) = 0.



I ⌦ := SN the space of sequences for a finite set S,

I ✓ : ⌦ ! ⌦ the left-shift operation,

I EZ :=
S

n2Z{(x, x0) 2 ⌦⇥ ⌦ : ✓n(x) = x0} the equivalence relation
of shift-equivalence,

I IZ = {A 2 B(⌦) : ✓�1(A) = A} the shift-invariant �-algebra,

I P, P 0 two Borel probability measures on ⌦, and

I ⇧(P, P 0) the space of all couplings of P and P 0.

Then (Aldous-Thorisson 1993):

sup
A2IZ

��P (A)� P 0(A)
�� = 0 if and only if min

P̃2⇧(P,P 0)
(1� P̃ (EZ)) = 0.

Also have generalizations to su�ciently regular group and semigroup
actions (Thorisson 1996, Georgii 1997).



sup
A2B(⌦)

��P (A)� P 0(A)
�� = min

P̃2⇧(P,P 0)
(1� P̃ (�)).



sup
A2T

��P (A)� P 0(A)
�� = min

P̃2⇧(P,P 0)
(1� P̃ (E0)).



sup
A2IZ

��P (A)� P 0(A)
�� = min

P̃2⇧(P,P 0)
(1� P̃ (EZ)).



sup
A2G

��P (A)� P 0(A)
�� ?
= min

P̃2⇧(P,P 0)
(1� P̃ (E)).



Many probability settings lead to the E-coupling problem

inf
P̃2⇧(P,P 0)

(1� P̃ (E)),

In general this problem is hard to solve and there are not many
general-purpose tools available.

On the other hand, the G-total variation problem

sup
A2G

|P (A)� P 0(A)|

is typically easy to analyze for probabilists.

These optimization problems are closely related! In fact, we’ll see that
they are often dual, in the sense of mathematical optimization.
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III. Problem statement



Notation:

I (⌦,F) standard Borel space,

I P(⌦,F) space of probability measures on (⌦,F),

I ⇧(P, P 0) space of couplings of P, P 0 2 P(⌦,F),

I E equivalence relation on ⌦, and

I G sub-�-algebra of F .



Definition

Say E is measurable if E 2 F ⌦ F . Say (E,G) is strongly dual if E is
measurable and if we have

sup
A2G

��P (A)� P 0(A)
�� = min

P̃2⇧(P,P 0)
(1� P̃ (E)).

for all P, P 0 2 P(⌦,F).

Roughly speaking, (�,B(⌦)), (E0, T ), and (EZ, IZ) are strongly dual.

Which pairs (E,G) are strongly dual?



If E is given, then there is a natural choice of G:

Lemma (AQJ)

If (E,G) is strongly dual for some G, then (E,E⇤) is strongly dual,
where E⇤ is the E-invariant �-algebra

E⇤ := {A 2 F : 8(x, x0) 2 E(x 2 A , x0 2 A)}

Say that E is strongly dualizable if (E,E⇤) is strongly dual.



Connection to optimal transport?

Note that the E-coupling problem

inf
P̃2⇧(P,P 0)

(1� P̃ (E)).

is exactly a Monge-Kantorovich problem with cost function

c(x, x0) = 1� 1{(x, x0) 2 E}.

In words: cost 0 to move within an equivalence class, and cost 1 to
move between equivalence classes.



E



Classical Monge-Kantorovich theory (Rachev-Rüschendorf 1998,
Villani 2009) requires topological regularity: ⌦ is a Polish space, F is
its Borel �-algebra, and c is lower semi-continuous.

In our setting, this requires E to be closed in ⌦⇥ ⌦; in this case,
Kantorovich duality and some standard tricks can show that E is
strongly dualizable.

However, most interesting equivalence relations, from the point of view
of probability, are F� (countable union of closed) in ⌦⇥ ⌦.



IV. Results



Some useful reductions:

It is easy to show that we always have weak dualizability, that

sup
A2E⇤

��P (A)� P 0(A)
��  inf

P̃2⇧(P,P 0)
(1� P̃ (E)),

for all P, P 0 2 P(⌦,F). The di�cult part is showing the reverse
inequality and that the inf is attained.

We say that E is quasi-strongly dualizable if for all P, P 0 2 P(⌦,F) the
following are equivalent:

I P (A) = P 0(A) for all A 2 E⇤

I There exists P̃ 2 ⇧(P, P 0) and N 2 F ⌦ F with P̃ (N) = 0 and
(⌦⇥ ⌦) \ E ✓ N .

Then E is strongly dualizable if and only if it is measurable and
quasi-strongly dualizable.



Some basic descriptive set theory:

A measurable space (S,S) is called a standard Borel space if there
exists a Polish topology ⌧ on ⌦ such that S = B(⌧).

An equivalence relation E on a standard Borel space (⌦,F) is called
smooth if there exists a standard Borel space (S,S) and a measurable
function � : (⌦,F) ! (S,S) such that (x, x0) 2 E is equivalent to
�(x) = �(x0).

Roughly speaking, E is smooth if and only if the quotient ⌦/E can be
given a natural standard Borel structure.



Lemma (AQJ)

The following are equivalent:

(i) E is smooth.

(ii) E⇤ is countably generated.

(iii) E 2 E⇤ ⌦ E⇤.

The equivalence between (i) and (ii) is classical, but the equivalence
with (iii) appears to be novel.



Theorem (AQJ)

Every smooth equivalence relation is strongly dualizable.

Consequence: All equivalence relations with G� (countable intersection
of open) equivalence classes are strongly dualizable.

Idea of proof: Do the folklore coupling in (⌦, E⇤) then “smooth things
over” with conditional expectations.
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However, many equivalence relations of interest are not smooth.

Instead, we have the following closure result:

Theorem (AQJ)

A countable increasing union of strongly dualizable equivalence
relations is strongly dualizable.

Idea of proof: Apply strong duality, and iterate.
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This shows strong dualizability for all hypersmooth (countable union of
smooth) equivalence relations, and this covers most “reasonable”
equivalence relations occurring in probability.



Thank you!
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