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What is the “mean” of samples Y1, . . . , Yn in a metric space (X , d) ?

If d is the metric given by a Hilbert space norm ∥ · ∥ on X , then the
sample mean 1

n(Y1 + · · ·+ Yn) is the unique solution to:{
minimize 1

n

∑n
i=1 ∥x− Yi∥2

over x ∈ X

Depends only the metric structure of the Hilbert space!



What is the “mean” of a probability measure µ on (X , d) ?

If d is the metric given by a Hilbert space norm ∥ · ∥ on X , then the
expectation

´
X d2(x, y) dµ(y) is the unique solution to:{

minimize
´
X ∥x− y∥2 dµ(y)

over x ∈ X

Depends only the metric structure of the Hilbert space!



Define the empirical Fréchet mean as

M̄n := argmin
x∈X

1

n

n∑
i=1

d2(x, Yi)

and the population Fréchet mean as

M := argmin
x∈X

ˆ
X
d2(x, y) dµ(y).

For this talk, assume uniquely achieved.



Do we have M̄n → M in a statistically meaningful sense?

If X is a Hilbert space, this follows from the classical limit theorems
(SLLN, CLT, concentration inequalites, rates of convergence etc.)

Definition

We say that the strong law of large numbers (SLLN) holds in (X , d) if
we have d(M̄n,M) → 0 almost surely when Y1, . . . , Yn are IID samples.

In which metric spaces does the SLLN hold?



General results require some sort of “finite-dimensionality”:

We say that (X , d) is a Heine-Borel space if the closed balls
B̄r(x) := {y ∈ X : d(x, y) ≤ r} are compact for all x ∈ X , r ≥ 0.

Theorem (Schötz, 2022)

If (X , d) is a Heine-Borel space, then the SLLN holds in (X , d).



But finite-dimensionality is not necessary!

Theorem (Sturm 2003)

If (X , d) is a Hadamard space, then the SLLN holds in (X , d).

Theorem (Le Gouic-Loubes, 2017)

If (S, ρ) is a complete, locally compact, geodesic metric space, then the
SLLN holds in the Wasserstein space (P2(S, ρ),W2).

Many other important examples of infinite-dimensional metric spaces
where no asymptotic theory is known...
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Example. spaces of planar loops in statistical shape analysis

Let X0 denote the space of functions C1,1 functions f : S1 → R2

satisfying ∥f ′(t)∥ = 1 for all 0 ≤ t ≤ 1.

Let d0 denote the following pseudometric on X0:

d0(f, g) := min
θ ∈ S1

U ∈SO(2)

(ˆ 2π

0

2∑
k=0

∥Uf (k)(t− θ)− g(k)(t)∥2 dt

)1/2

Then, consider quotient space (X , d) of (X0, d0).

One of many possible metrics on spaces of planar loops used in
statistical shape analysis (Kurtek-Srivastava-Klassen-Ding 2012).
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A topology w on X is called a weak convergence for (X , d) if:

(W1) If {xn}n∈N and y in X satisfy supn∈N d(xn, y) < ∞, then there
exists a subsequence {nk}k∈N and a point x ∈ X satisfying
xnk

→ x in w.
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A topology w on X is called a weak convergence for (X , d) if:

(W1) If {xn}n∈N and y in X satisfy supn∈N d(xn, y) < ∞, then there
exists a subsequence {nk}k∈N and a point x ∈ X satisfying
xnk

→ x in w.

(W2) If {xn}n∈N and x in X satisfy xn → x in w, then for all y ∈ X we
have d(x, y) ≤ lim infn→∞ d(xn, y).

(W3) If {xn}n∈N and x in X satisfy xn → x in w and satisfy
d(xn, y) → d(x, y) for some y ∈ X , then we have xn → x in d.

We say that (X , d) admits a weak convergence if there exists a weak
convergence w for (X , d).



Theorem (AQJ 2024)

If (X , d) admits a weak convergence, then the SLLN holds in (X , d).

Notice that the conclusion refers only to the metric d.

The existence of a weak convergence is a geometric property of (X , d).
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II. On Weak Convergence



Basic examples:

Recall topology w on X is called a weak convergence for (X , d) if:

(W1) d-bounded sets are relatively w-compact,

(W2) d is w-lower-semicontinuous, and

(W3) d is w-continuous only where it is d-continuous.

metric space weak convergence (W1) (W2) (W3)

Heine-Borel space metric convergence definition trivial trivial

Hadamard space Jost’s convergence Jost’s Banach-
Alaoglu theorem

weak lower semi-
continuity of metric

Kadec-Klee
property

Wasserstein space
weak convergence of

probability measures
Prokhorov
theorem

Fatou lemma definition

uniformly convex

Banach space
weak topology

Milman-Pettis
theorem

weak lower semi-
continuity of norm

Kadec-Klee
property



Example.

Let H be a (possibly infinite-dimensional) Hilbert space

Let K denote the space of covariance operators on H

Set Π(Σ,Σ′) := W2(N (0,Σ),N (0,Σ′)), the Bures-Wasserstein metric

For {Σn}n∈N and Σ in K, say Σn → Σ in w if

ˆ
H
ϕ dN (0,Σn) →

ˆ
H
ϕ dN (0,Σ)

for all weakly continuous ϕ : H → R.

Similar to existing considerations in the theory of gradient flows
(Ambrosio-Gigli-Savaré 2008), and recovers known results for
Bures-Wasserstein barycenters (Masarotto-Panaretos-Zemel 2019).



Closure properties:

Want to provide a “calculus” for constructing further examples of
interest, as in Grenander’s pattern theory (Mumford 2003).

metric space

operation
inputs output weak convergence

restriction

(X , d) with weak convergence w,

w-closed subset X ′ ⊆ X (X ′, d) w

product

(X1, d1) with weak convergence w1,

(X2, d2) with weak convergence w2 (X1 × X2, d1 ⊗q d2) w1 ⊗ w2

quotient

(X , d) with weak convergence w,

compact group G

acting isometrically (X/G, dX/G)
Γ-convergence of

orbits under w

regularization

(X , d) with weak convergence w,

proper metric group (G, ρ)

acting isometrically
(X , dG,ρ) w



Example.

Let X0 denote the space of functions C1,1 functions f : S1 → R2

satisfying ∥f ′(t)∥ = 1 for all 0 ≤ t ≤ 1.
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d0(f, g) := min
θ ∈ S1

U ∈SO(2)

(ˆ 2π

0

2∑
k=0

∥Uf (k)(t− θ)− g(k)(t)∥2 dt

)1/2

Then, consider quotient space (X , d) of (X0, d0).

One of many possible metrics on spaces of planar loops used in
statistical shape analysis (Kurtek-Srivastava-Klassen-Ding, 2012).



III. The Continuity Theorem



Want a general asymptotic theory for Fréchet means which...

✓□ holds in many infinite-dimensional metric spaces of interest

□ implies many limit theorems of interest

□ requires the minimal moment assumptions

□ requires no uniqueness assumptions



Many limit theorems at once?

Notice that the empirical Fréchet mean depends only on the empirical
measure µ̄n := 1

n

∑n
i=1 δYi :

M = argmin
x∈X

1

n

n∑
i=1

d2(x, Yi)

So, define

M(µ) := argmin
x∈X

ˆ
X
d2(x, y) dµ(y).

Since we have µn → µ in many senses, we can deduce limit theorems
for Fréchet mean sets from limit theorem from empirical measures.



Minimal moment assumption?

Write Pp(X ) for the set of µ with
´
X dp(x, y) dµ(y) < ∞ for all x ∈ X .

Define the map M : P2(X ) → 2X via

M(µ) := argmin
x∈X

ˆ
X
d2(x, y) dµ(y)



Minimal moment assumption?

Write Pp(X ) for the set of µ with
´
X dp(x, y) dµ(y) < ∞ for all x ∈ X .

Define the map M : P1(X ) → 2X via

M(µ) := argmin
x∈X

ˆ
X
(d2(x, y)− d2(o, y)) dµ(y)

for arbitrary o ∈ X .

This makes sense because

|d2(x, y)− d2(o, y)| ≤ d(x, o)(d(x, y) + d(o, y))

in any metric space!



Convergence without uniqueness?

For non-empty bounded subsets {Mn}n∈N and M of X , consider

max
xn∈Mn

min
x∈M

d(xn, x) → 0.

Plainly, every element of Mn is close to some element of M .

If {Mn}n∈N and M are singletons, then equivalent to d(Mn,M) → 0.



Let W1 denote the 1-Wasserstein metric (i.e., Kantorovich-Rubinstein
metric) on P1(X ).

Theorem (AQJ 2024)

If (X , d) is separable and admits a weak convergence and {µn}n∈N and
µ in P1(X ) satisfy W1(µn, µ) → 0, then

max
xn∈M(µn)

min
x∈M(µ)

d(xn, x) → 0

as n → ∞.

This is a purely analytic result, but we will later take µn := µ̄n.



Proof Outline.

Take xn ∈ M(µn) for all n ∈ N, then:
(S0) Show that {xn}n∈N is d-bounded.

(S1) Get {nk}k∈N and x∞ ∈ X with xnk
→ x∞ in w.

(S2) Show x∞ ∈ M(µ).

(S3) Show xnk
→ x∞ in d.

Definition

A topology w on X is called a weak convergence for (X , d) if:

(W1) d-bounded sets are relatively w-compact

(W2) d is w-lower-semicontinuous.

(W3) d is w-continuous only where it is d-continuous.

Earlier works (Thorpe-Theil-Johansen-Cade 2015, Le Gouic-Loubes
2017, Schötz 2022) outline same method of proof.



IV. Future Work



Verify existence of weak convergence for other metric spaces:

▶ large deformation diffeomorphic metric mapping (LDDMM)
(Bauer-Bruveris-Michor 2014, Younes 2019)

▶ invariant L2 metric on graphons
(Kolaczyk-Lin-Rosenberg-Walters-Xu 2020)

Non-examples:

▶ Easy case X = [−1, 0) ∪ (0, 1], with µ = 1
2δ−1 +

1
2δ1

▶ What if X is complete?

Refining other limit theorems:

▶ Central limit theorem requries some further differentiable structure

▶ Large deviations theory requires some additional steps



Thank you!
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