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What is the “mean” of samples Y7,...,Y,, in a metric space (X, d) 7

If d is the metric given by a Hilbert space norm || - || on X, then the
sample mean +(Y; 4 -+ +Y},) is the unique solution to:

minimize 37 | ||z — Y;|?
over reX

Depends only the metric structure of the Hilbert space!



What is the “mean” of a probability measure p on (X,d) ?

If d is the metric given by a Hilbert space norm || - || on X, then the
expectation [, d?(z,y) du(y) is the unique solution to:

minimize fX |z — yH2 du(y)
over reX

Depends only the metric structure of the Hilbert space!



Define the empirical Fréchet mean as

_ 1o
M, := arg min — Zdz(x, Yi)

mn
TeEX i—1

and the population Fréchet mean as

M = argmin/ d?(x,y) du(y).
zeX X

For this talk, assume uniquely achieved.



Do we have M,, — M in a statistically meaningful sense?

If X is a Hilbert space, this follows from the classical limit theorems
(SLLN, CLT, concentration inequalites, rates of convergence etc.)

Definition

We say that the strong law of large numbers (SLLN) holds in (X, d) if
we have d(M,,, M) — 0 almost surely when Y1,...,Y,, are IID samples.

In which metric spaces does the SLLN hold?



General results require some sort of “finite-dimensionality”:

We say that (X, d) is a Heine-Borel space if the closed balls
B.(x) :={y € X : d(z,y) < r} are compact for all z € X,r > 0.

Theorem (Schétz, 2022)
If (X,d) is a Heine-Borel space, then the SLLN holds in (X,d).



But finite-dimensionality is not necessary!

Theorem (Sturm 2003)
If (X,d) is a Hadamard space, then the SLLN holds in (X,d).

Theorem (Le Gouic-Loubes, 2017)

If (S, p) is a complete, locally compact, geodesic metric space, then the
SLLN holds in the Wasserstein space (Pa(S, p), Wa).

Many other important examples of infinite-dimensional metric spaces
where no asymptotic theory is known...
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Ezxample. spaces of planar loops in statistical shape analysis

Let Xy denote the space of functions C™! functions f : S' — R?
satisfying ||f/(¢)]| =1 for all 0 < ¢ < 1.

Let dy denote the following pseudometric on Xj:

2 2 1/2
do(f.g) = ( / ZHUf"“’(t—G)—g(’“)(t)H?dt>
k=0

U eSO

Then, consider quotient space (X, d) of (Xp,dp).

One of many possible metrics on spaces of planar loops used in
statistical shape analysis



Definition
A topology w on X is called a weak convergence for (X,d) if:



Definition
A topology w on X is called a weak convergence for (X,d) if:

(W1) d-bounded sets are relatively w-compact.



Definition
A topology w on X is called a weak convergence for (X,d) if:

(W1) If {xn }nen and y in X satisfy sup, ey d(2n,y) < 0o, then there
exists a subsequence {ny}ren and a point x € X satisfying
Tp, — T in w.
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Definition
A topology w on X is called a weak convergence for (X,d) if:

(W1) If {x }nen and y in X satisfy sup, ey d(2n,y) < 0o, then there
exists a subsequence {ny}ren and a point x € X satisfying
Tp, — T in w.

(W2) If {zp }nen and z in X satisfy x,, — = in w, then for all y € X we
have d(x,y) < liminf,, o d(zp,y).

(W3) If {zp }neny and z in X satisfy z, — = in w and satisfy
d(zp,y) — d(x,y) for some y € X, then we have x,, — z in d.

We say that (X, d) admits a weak convergence if there exists a weak
convergence w for (X, d).



Theorem (AQJ 2024)
If (X,d) admits a weak convergence, then the SLLN holds in (X,d).

Notice that the conclusion refers only to the metric d.

The existence of a weak convergence is a geometric property of (X, d).



I. Introduction

II. On Weak Convergence
III. The Continuity Theorem
IV. Future Work



II. On Weak Convergence



Basic examples:

Recall topology w on X is called a weak convergence for (X,d) if:

(W1) d-bounded sets are relatively w-compact,

(W2) d is w-lower-semicontinuous, and
(W3) d is w-continuous only where it is d-continuous.

metric space weak convergence (W1) (W2) (W3)
Heine-Borel space metric convergence definition trivial trivial
’ 3 i-
Hadamard space Jost’s convergence Jost’s Banach- wegk lewer semi- Kadec-Klee
Alaoglu theorem continuity of metric property
weak convergence of Prokhorov
. Fatou lemma definition
probability measures theorem
weak lower semi- Kadec-Klee
property

‘Wasserstein space

Milman-Pettis

continuity of norm

uniformly convex
Banach space

weak topology

theorem




Ezample.

Let H be a (possibly infinite-dimensional) Hilbert space

Let K denote the space of covariance operators on H

Set II(X, X') := Wa(N(0,X),N(0,%")), the Bures-Wasserstein metric

For {3, }en and ¥ in K| say ¥, — ¥ in w if

/H 6 AN(0, %) — /H 6 AN(0, %)

for all weakly continuous ¢ : H — R.

Similar to existing considerations in the theory of gradient flows
, and recovers known results for
Bures-Wasserstein barycenters



Closure properties:

Want to provide a “calculus” for constructing further examples of
interest, as in Grenander’s pattern theory

metric space

. inputs output weak convergence
operation
(X, d) with weak convergence w,
restriction w-closed subset X' C X (X’, d) w
(X1,d1) with weak convergence wi,
product (X2, d2) with weak convergence wa (X1 X Xo,d1 ®q d2) w1 @ wa
(X, d) with weak convergence w,
compact group G I'-convergence of
quotient acting isometrically (x/G, dX/G) orbits under w
(X, d) with weak convergence w,
roper metric group (G
regularization prop & p (G, p) (x, dG,p) w

acting isometrically




Ezample.

Let Xy denote the space of functions C™! functions f : S' — R?
satisfying ||f/(¢)]| =1 for all 0 < ¢ < 1.

Let dy denote the following pseudometric on Xj:

2 2 1/2
do(f.g) = ( / ZHUf"“’(t—G)—g(’“)(t)H?dt>
k=0

U eSO

Then, consider quotient space (X, d) of (Xp,dp).

One of many possible metrics on spaces of planar loops used in
statistical shape analysis



III. The Continuity Theorem



Want a general asymptotic theory for Fréchet means which...
M holds in many infinite-dimensional metric spaces of interest
[0 implies many limit theorems of interest
[0 requires the minimal moment assumptions

(] requires no uniqueness assumptions



Many limit theorems at once?

Notice that the empirical Fréchet mean depends only on the empirical

measure fi, == 1 3" | y;:

So, define

Since we have p, — p in many senses, we can deduce limit theorems
for Fréchet mean sets from limit theorem from empirical measures.



Minimal moment assumption?
Write P,(X) for the set of p with [, dP(z,y) du(y) < oo for all z € X.

Define the map M : Po(X) — 2% via

M(p) := arg min /X d*(x,y) dp(y)



Minimal moment assumption?
Write P,(X) for the set of p with [, dP(z,y) du(y) < oo for all z € X.

Define the map M : P;(X) — 2% via

M(p) = angmin /X (@(x,) — &(0,1)) du(y)

for arbitrary o € X.

This makes sense because

|d*(2,y) — d*(0,y)| < d(x, 0)(d(,y) +d(0,y))

in any metric space!



Convergence without uniqueness?

For non-empty bounded subsets { M, },eny and M of X, consider

max min d(x,,z) — 0.
Tn€Mp z€M

Plainly, every element of M, is close to some element of M.

If {M,}nen and M are singletons, then equivalent to d(M,,, M) — 0.



Let W7 denote the 1-Wasserstein metric (i.e., Kantorovich-Rubinstein
metric) on Py (X).

Theorem (AQJ 2024)

If (X,d) is separable and admits a weak convergence and { i, }nen and
win P1(X) satisfy Wi (pn, u) — 0, then

max  min d(zp,z) — 0
Tn€M () zEM (1)

as n — oQ.

This is a purely analytic result, but we will later take p, := fiy,.



Proof Outline.

Take x,, € M (py,) for all n € N, then:

(S0) Show that {z, }nen is d-bounded.

(S1) Get {ng}reny and zo € X with z,, — To in w.

(S2) Show zo € M(p).

(S3) Show z,, — T in d.

Definition

A topology w on X is called a weak convergence for (X,d) if:
(W1) d-bounded sets are relatively w-compact
(W2) d is w-lower-semicontinuous.

(W3) d is w-continuous only where it is d-continuous.

Earlier works
outline same method of proof.



IV. Future Work



Verify existence of weak convergence for other metric spaces:

» large deformation diffeomorphic metric mapping (LDDMM)

» invariant L? metric on graphons

Non-examples:
» Easy case X = [—1,0) U (0,1], with p = %5_1 + %51
» What if X is complete?

Refining other limit theorems:
» Central limit theorem requries some further differentiable structure

» Large deviations theory requires some additional steps



Thank you!
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