THE GAUSSIAN FREE FIELD

ADAM QUINN JAFFE

1. INTRODUCTION

The Gaussian free field (GFF) is a rich object from mathematical physics with
many connections to many areas of probability: it is a random (generalized) func-
tion which generalizes Brownian motion to higher dimensional index sets; it is
conformally invariant in the plane and in this setting its “level sets” look like
Schramm-Loewner curves; it is the exponent in the metric tensor of the canonical
family of random surfaces known as Liouville Quantum Gravity; the list goes on.
Because of these many properties, the GFF is rich object whose basic construc-
tion and properties are even quite complicated. In this note we give a relatively
self-contained construction of the GFF and and exploration of some of these fun-
damental properties.

We follow mainly the exposition of [5], but we also use some of the ideas and
notation from [1] and [1]. For some non-trivial facts about the Dirichlet problem,
spectral theory of the Laplacian, and some other facts from PDE, we use [3]. We
also assume familiarity with the basic concepts of Brownian motion, functional
analysis, and complex analysis.

2. ANALYTIC PRELIMINARIES

In this section we give the analytical preliminaries necessary for constructing the
GFF. This requires defining the Green’s function for domains in R%, and developing
its relationship with the Laplacian operator and some function spaces of interest,
as well as developing the spectral theory of these operators.

For this section, assume d > 2 is an integer, and that D C R? a connected, open
set which we call a domain. Usually we will assume that D is bounded; this is
mostly for the sake of exposition, since many results remain true in the unbounded
setting but with more complicated proofs that do not add much new insight. We
remark that many important examples correspond to unbounded regions without
these properties (for example, the entire space R? for d > 3 and the upper half-plane
H in R? are important examples for the theory). We also emphasize, however, that
the spectral theory results of the second subsection require boundedness.

Further, let us say that a point z € D is regular if, for any z € 9D, when {B;};>0
denotes a standard Brownian motion in R? started at z, we have inf{t > 0: B; ¢
D} = 0 almost surely. In other words, a is regular if a Brownian motion started at
that point exits the domain in arbitrarily small times. It is clear that no element
of D can be regular; we say that D is itself regular if all of its boundary points
are regular. We further assume in this section that D is a regular domain, but
this comes at no real cost to generality. All of the domains of interest have either
differentiable boundaries or empty boundaries, and they are hence regular.

1



2 ADAM QUINN JAFFE

2.1. The Green’s Function. The primary step in the construction of the analytic
preliminaries is to define the Green’s function Gp : D x D — [0,00) of a regular
domain D. This object encodes a lot of information about the geometry of D,
and hence has many equivalent formulations, each of which is useful for different
purposes. In the present work we will provide four characterizations of the Green’s
function, mostly without proof, so that we may use these different forms in our
later construction of the GFF.

The basic definition, which amounts to our first characterization, constructs the
Green’s function directly in terms of the potential theory of Brownian motion. To
do this, define the function H, : R — R via Hy(z) = —a; 'log|z — y| in d = 2
and Hy(v) = aj 'z — y|>~ for d > 2, where aq represents the surface measure of
the unit sphere {x € R? : ||z|| = 1}. Note in particular that these are constant
multiples of the unique radial harmonic functions in R? \ {0}.

Now define a measurable space (€2, F) and a stochastic process {B;};>o which
is made into a standard Brownian motion in R? under the family of measures
{P,},cra. For each x € R? write E, for the expectation associated to P,. Also
write 7p = inf{t > 0: By ¢ D} for the first exit time from D.

Definition 2.1. We set Gp : D x D — R via
(2.1) GD<x’y) = Hy(l‘) - EI[Hy(BTD)]’
called the Green’s function of D.

The following cartoon illustrates the various objects leading in to the construc-
tion of the Green’s function, for a regular domain D C R? and any point y € D:

H, () &, [Hy(8:)) | Gy (%, )

While we focus primarily on probabilistic aspects of the Green’s function in this
note, we mention the Green’s function is also of primary importance in PDE: The
function « + E,[Hy,(B,,)] is the unique solution to the Dirichlet problem Au =0
in D subject to the boundary condition u|gp = H,.

Next we show that the marginal functions of the Green’s function are uniquely
determined by a few natural properties related to these concepts. This provides
our second characterization of the Green’s function.

Lemma 2.2. Fiz anyy € D. Then, Gp(-,y) is the unique function g : D — R
which s
(1) continuous on D\ {y},
(2) harmonic on D\ {y},
(3) wanishing on 0D, and
(4) such that g — Hy is bounded.

Proof. First let us show that Gp(-,y) has the enumerated properties. For (1), we
note that Gp(-,y) is just the difference of two continuous functions. For (2), take



THE GAUSSIAN FREE FIELD 3

x € D and get € > 0 such that the open ball B.(x) satisfies B.(x) C D. Then
define 7p_(,) = inf{t > 0 : B; ¢ B.(v)}, which clearly has 7p_(,y < 7p. Recall
that B, is uniformly distributed on 0Bc(z) when By = x, and write S for the
surface measure on 9B, (z). Combining these observations with the strong Markov
property and Fubini, we get:

E, [Hy(BTD)] =E, []E [Hy(BTD)|BTBE(z):H

=E; {]EBTBSW [Hy(BTD)ﬂ

:Ew

| HB)ase)| = [ BB, )SG),

8B (x) 9B (x)

This shows that « — E,[H,(B,,)] has the mean-value property and is hence har-
monic. Since x — H,(z) is also harmonic, this establishes (2). For (3), note that
the regularity condition on D implies that we have 7p = 0 almost surely whenever
By € 0D, hence G(z,y) = Hy(z) — Hy(z) = 0 for any « € 9D. For (4), we simply
note that 0D is compact and that H, is a continuous function on 0D, hence it
is bounded. Since E,[H,(B.,)] is an average of these values, it satisfies the same
bounds as does H, on 0D.

For the converse, suppose that gi,g2 : D — R are two functions satisfying the
enumerated properties. Then for each z € D, let {B,};>0 be a Brownian motion
with By = x, and define the process {M;};>o via My = g1(B:¢) — g2(By). Since
g1 — g2 is harmonic by (2), we see that {M;};>0 is a martingale. Moreover, it is
continuous by (1) and the fact that a Brownian motion in R? for d > 2 is not point-
recurrent. By optional stopping we have g1 (z) — g2(z) = E,[Mo] = E.[Minarp ], and
since {M,};>0 is bounded by (4), we can take — oo with bounded convergence to
get g1(z) — gg(l‘) = EE[MTD]' Now by (3) we have M, = gl(BTD) - gQ(BTD) =0,
hence g1 (z) = g2(x). O

For our third characterization, we interpret the Green’s function as the occu-
pation density of a Brownian motion in D. To do this, write pP(z,y) for the
subdensity at y of a Brownian motion started at x, killed when it exits D. Then
we have the following, which we give without proof.

Lemma 2.3. We have
1

(2.2) Gole) =5 [ Pl

In particular, for any open set A C D we have
1 e
(2.3) / Gp(z,y)dy = iEz [/ 1{B; € A} dt] .
A 0

Since the density pP is known explicitly in some cases of interest, the character-
ization above can be useful for analyzing the Green’s function and its asymptotics.
This form also shows that Gp is a symmetric function, which is not immediately
obvious from either of the prior characterizations we introduced.

For our fourth and final characterization, which is perhaps the most important,
we view Gp as a kernel and study a corresponding integral operator. To do this,
write C*°(D) for the space of smooth which continuous functions f : D — R,
and write C§°(D) for the space of smooth functions f : D — R with compact
support in D. For f € C§°(D), let us define the function Gpf : D — R via
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(Gpf)(x) = [, Gp(z,y)f(y)dy. The main step is to establish some properties of
this 1ntegra1 operator, and then to show that it is, in a suitable sense, the inverse
of the Laplacian.

To do this we must define some function spaces of interest. Write (f, g)r2(p) =
Jp f(x)g(x)dx for the usual inner product, and ||fHL2(D) = [p|f(x)*dz for
the Correspondlng norm; let L?(D) denote the completion of C§°(D) under this
norm, which becomes a Hilbert space. Also define the bilinear form ) f, g)31(p) =
Jp Vf(x) - Vg(x)dr and write ||f||H1 (D) = = [, IVf(2)|? dz for the corresponding
norm. The completion of C§°(D) under |-l (py is a Hilbert space which we
denote H} (D). Of course, observe Hj(D) C L?(D).

Lemma 2.4. The integral operator of the Green’s function is a continuous linear
bijection Gp : L?(D) — H§(D), and its inverse is the map —A : Hi(D) — L?*(D).

2.2. Spectral Theory. Having developed the requisite properties of the Green’s
function, the next step is to recall the spectral theory of the Laplacian operator
and to use this theory to make some of the preceding characterizations more con-
crete. Recall that in the previous subsection, the assumption that the domain D
was bounded was mainly to simplify some technical points; in this subsection, the
assumption that D is bounded is actually necessary for the desired eigensystems to
exist.

To begin, we review a standard result (see [3, Theorem 11.5.1]) on the spectral
theory of the Laplacian: When D is a bounded regular domain, there exists a se-
quence {¢;};en of eigenfunctions of —A which lie in #}(D) C L?*(D), and such that
the corresponding sequence of eigenvalues {\; };cn are positive and tend to infinity.
Moreover, the sequence {¢;},en forms a complete orthonormal system in L?(D),
and the sequence {¢;/+/A;}jen forms a complete orthonormal system in H{(D).
We refer to this ensemble of objects collectively as the Laplacian eigensystem.

Our first result gives a more concrete description of the Green’s function in terms
of the Laplacian eigensystem. We regard this as a certain kind of “diagonalization”
result, whereby we write a complicated kernel in terms of rank-one operators.

Lemma 2.5. For z,y € D, we have

(2.4) Z +0i(2)95(y)-

JjeN ]

Proof. Fix y € D, and consider the function P(t,z) = pP(z,y). For each t > 0 we
can write

(2.5) P(t,x) =Y ¢;(t)g;()
JEN
where the sum converges in L?(D), and {c;(t)};en is some sequence of real coeffi-

cients. Now recall that P also satisfies the heat equation 0;P = %AP on D subject
to zero boundary conditions. In particular, we have

)= &(1)g;(x)

jEN

Jap() =- 3 DNy )

jeN
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so matching coefficients leads to the ODE 2¢}(t) = —c;(t)A; for each j € N. This

is solved at ¢;(t) = ¢;(0)exp(—3A;t), so we only need to determine the initial
conditions. At this point we have shown
1,
(26) Py (2,y) =Y c;(0)e™ 3 0;(2)6;(y),
JEN

so applying the first identity of Lemma 2.3 and integrating over ¢t > 0 gives

(27) ey =3 2o )6, )

)\.
jeN Y

Now recall that ¢; is an eigenfunction of Gp with eigenvalue A; for all j € N, so
we conclude ¢;(0) = 1 for all j € N, whence the result. (]

Remark 2.6. The proof of the preceding result also showed that we have
_1y.
(2.8) Pl (@,y) =) e 2N i(x)d;(y),

JjEN
for all ¢ > 0, which is interesting in its own right.

In fact, it can be shown that (2.4) actually holds in L?(D x D) instead of merely
pointwise, but we do not develop this idea here. We also remark that, from the
form of the Green’s function in the preceding result, one can derive some precise
asymptotics in particular cases of interest where the eigensystem of the Laplacian
is known.

Next, we note that we can characterize Sobolev space H}(D) in terms of the
Laplacian eigensystem, as

¢.
(2.9) Ho(D) = aj—r=: Y a?< oo
0 ;é% ]\/X; ;é% J

where the summation is of course understood to converge in H}(D). By making
the substitution ¢; = a;/1/A;, we can characterize this space equivalently as

(210) Hé(D) = ZCj¢j : Z)\jC? < 0

JEN JjEN

so Hy(D) is isometrically isomorphic to the space of real sequences {c;}jen satis-
fying > jeN )\jc? < 0o, under the obvious identification.

This perspective leads us to a natural generalization whereby we define,
for each r € R, the space H{(D) as the closure of those elements f €
C5°(D) satistying 3y N5 ([p f(x)¢;(x) dx)? < oo under the norm ”fH%{S(D) =
D jen A ([ f(x)¢;(x) dz)?. The importance of this construction is that it will turn
out to be useful to view the GFF as a certain random element of these generalized
Sobolev spaces. In particular note that H)(D) = L?(D).

Finally, we remark that much is known about the asymptotics of the eigenvalues
{A\;}jen. The famous Weyl’s law (see [2]) states that there exists a constant ¢4
depending only on the dimension d such that A; ~ ¢4 Vol(D) 42/ in the sense that
the ratio of the two sides tends to 1 as j — oo.
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2.3. The Case of Dimension Two. While we have defined and studied the
Green’s function for regular bounded domains D in R? there is a special role
played by d = 2, in which many important symmetries are present. Again, we
assume the usual conditions on D, including boundedness, although boundedness
is not necessary for most of the results herein. For a first indication of where d = 2
appears, we give the following result which shows, in particular, that two is the
only dimension in which the Green’s function is scale-invariant.

Lemma 2.7. For any A > 0 and x,y € D, we have Gyp(\z, \y) = N2~ ¢Gp(z,y).

Proof. For any A > 0, set {B;};>0 via AB; = B2, which is just a standard
Brownian motion started at x; write P, for its law and E! for the corresponding
expectation. Also define 77, = inf{t > 0 : B} ¢ D} and note that this stopping
time satisfies )\27']’3 = 7\ p hence )‘BlTb = B,,,. Thus we can compute, for d = 2:

Gap(\z, \y) = HAy()‘x) - EM[HM/(BTD”
1 1
= ——1log | \x — \y| — Exs {— log |Br, , — )\yq
a2 ag

1 1
= ——log|\z — \y| — E, [— log |A\B., — )\yq =Gp(z,y),
as az b

and for d > 3:
Gap(Az, Ay) = Hay(Ax) — Exa[Hoy(Brp)]

1

1
=—— Dz - >4 —Ey, |——|Br, — My ¢
CLd| € y| A |: de| AD y|

1 1
= e = M B <A i = NG ()
Qaq aq
as claimed. 0O

In fact, the Green’s functions in dimension two have many other symmetries
which we now outline. For this subsection, we consider only d = 2. Since the
language of complex analysis is useful for simplifying certain statements in this
setting, we use the natural identification of R? with C.

Recall that for two domains D, D’ C C, a conformal map ® between them is a
function ® : D — D’ which is holmorphic. We say that D and D’ are conformally
equivalent if there exists a bijective conformal map from one to the other such that
its inverse is also conformal; we call such a map a conformal equivalence. As we
show next, the Green’s function is not only invariant under scaling, but actually
under more general conformal equivalences:

Lemma 2.8. Suppose that ® : D — ®(D) is a conformal equivalence which extends

continuously to a homeomorphism ® : D — ®(D). Then, Go(p)(®(z), P(y)) =
Gp(z,y) for all z,y € D.

Proof. Fix y € D and define consider the function Gep)(®(-),®(y)) : D — R.
We claim that Gg(py(®(-), (y)) satisfies the four hypotheses of Lemma 2.2; these
all follow from viewing it as the composition of the functions ® : D — D’ and
Ga) (-, P(y)) : D’ — R. Indeed, (1) follows since both functions are continuous,

(2) follows since the pre-composition of a harmonic function by a conformal map is
harmonic, and (3) follows since ® maps 9D to 9(®(D)) and Gg(p)(-, P(y)) vanishes
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on 9(®(D)). For (4), note that it suffices to show that h(z) = Hg () (®(z)) — Hy(x)
is bounded on D. It is clear that h is bounded on D\ {y}, and it remains bounded
as x — y, since we can directly compute:

h(z) = *i log |9(x) — B(y)| + élog x|
PNLOR ]

a2 |517 *y|

1
— ——log @ (y).
as

By Lemma 2.2, we see that Gg(py(®(-), ®(y)) and Gp(-,y) satisfies the enumerated
properties, hence they are equal. Applying this to all y € D, and noting that both
functions vanish for y € 9D, gives the result. O

We remark that the preceding result, in its current form, is actually of little
value since the condition about extending to a homeorphism of the closures is quite
restrictive. Fortunately there exist more general results which do not suffer this
curse, but we do not state them precisely here.

Next we point out that invariance under conformal equivalence (in the stronger
form alluded to) is a powerful tool for calculations with the Green’s function, since,
if Gp is known for any particular domain D, then it can be derived for any other
domain D which is conformally equivalent to it. By the Riemann mapping theorem,
any two simply-connected domains are conformally equivalent, so, in principle, one
can find the Green’s function on any simply-connected domain just by knowing the
Green’s function on a particular one, say the unit disk D = {z € C: |z| < 1} We
will see examples of this in the next subsection.

In fact, conformal equivalence leads one to more precise asymptotics for the rate
of growth of the singularity of the Green’s function near the diagonal. By property
(4) of Lemma 2.2, we know Gp(z,y) = —ay ' log|z —y| + O(1) as  — y, but in
the planar case we have a more refined estimate:

Lemma 2.9. Suppose that D C R? is simply-connected, and fix y € D. By the

Riemann mapping theorem, there exists a unique conformal equivalence ® : D —

with ®(0) =y and ®'(0) > 0. Then,

@'(0)
27

as x — y. Here, ®'(0) is called the conformal radius of D at y.

(2.11) Gp(r,y) = —a; " logle —y| + +o(1)

2.4. Examples. In this last subsection we give a few examples of the Green’s
function in a few domains of interest. The most important cases, as we saw in the
last subsection, concern d = 2, so that is where we focus our attention.

First, let’s find the Green’s function in the upper half-plane H = {z € C :
Im(z) > 0}. By the reflection principle, we have pi(z,y) = pi(z,y) — pe(2, ),
where p; represents the density of a standard complex Brownian motion with no
killing. Thus by Lemma 2.3 and some calculations that we omit, we have

L el

(2.12) Gu(z,y) = o log z gl

Next we consider the unit disk D = {# € C : |z| < 1}. A conformal equivalence

taking D to H is known to be the Mobius transformation ®(z) = %fz Thus by
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(2.12) and Lemma 2.8, we get

1 1—zy
_ 1 =gl

(2.13) Gp(z,y) o P

Like we remarked in the last section, we can boostrap our knowledge of the Green’s
function on I and H to knowing the function on any simply-connected domain,
although we do not pursue this here.

3. THE GAUSSIAN FREE FIELD

We are now ready to use the analytic tools of the previous section to define and
study the main object of interest, the Gaussian free field (GFF). To motivate this,
note that the case of d = 1 was exlcluded from all our previous work, although much
of it could have gone through mutatis mutandis. The reason is that the GFFs in the
domain (0, 1) and (0, c0) turn out to be nothing more than a Brownian bridge and
a Brownian motion. In this way, the GFF can be seen as a generalization of these
standard Brownian objects to more general domains in higher dimensions. As we
will see, the GFF can be viewed as certain kind of “canonical” random function in
D, although, as long d > 2, it will turn out that the GFF is not definable pointwise
at all.

3.1. The Basic Construction. To begin, fix an integer d > 2 and let D C R?
be a regular domain. As in the last section, we suppose for ease of exposition that
D is also bounded, but this condition is not necessary unless we want to appeal to
the spectral theory results. Let Gp : D x D — R be the Green’s function in D, as
defined in the last section. Then let P(D) denote the space of finite signed Borel
measures in D, and define Mp = {u € P(D) : [, ,|Gp(x,y)|d|u|(z)d|p|(y) <
00}

Our basic construction is to define the GFF as a Gaussian process indexed by
Mp. That is, it roughly describes how much (weighted) oscillation lies in the
distribution u € Mp. More concretely, we need the following.

Lemma 3.1. The function ¥p : Mp x Mp — R defined by Yp(u1,ue) =
Jp«p Go(x,y) dui(x)dps(y) is positive semidefinite.

Proof. We need to show that for ai,...ar € R and pi,...ur € Mp, we have
Zle 2?21 a;a;Xp(pi, ;) > 0. By the linearity of X, this is equivalent to
o> aipi, Yoy aipi) > 0, and, since Mp is a vector space, it suffices to
show that we have ¥ p(p, ) > 0 for all p € Mp.

To do this, consider f € C§°(D) and note by Lemma 2.4 that the function
F = Gpf € H}(D) satisfies AF = —f. Thus, by Fubini and Stokes’ theorem we
have

/ ChWMﬂ@ﬂMMWZ—/F@Mﬂ@m@
DxD

D
=/vamwmwzo
D

Now we use an approximation argument to extend this to p € Mp: Choose a non-
negative C§°(D) function  with supp(¢)) € B1(0) such that [, ¢(x)dz = 1. Then
for each € > 0 set 1. (z) = e~ %p(e~%z), and define the function f. = (u=1.). It is
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well-known that the measures p.(dx) = fe(x)dx satisfy p. — p as distributions as
e — 0, and hence that

(3.1) / Gp(z,y)fe(z)fe(y) dody — Gp(z,y) dp(z)du(y).

DxD DxD
Since the left side is non-negative for each € > 0, the right must be non-negative as
well, establishing the claim. O

Definition 3.2. The GFF in D is the mean-zero Gaussian process I'p =
{T'p (1)} pem,, with covariance structure Cov(I'p(u1),I'p(p2)) = Ep(p1, p2)-

While the above construction is interesting, it is lacking in at least two ways.
The first is that it appeals to an abstract result about the existence of Gaussian
processes, rather than constructing the GFF from more familiar objects directly.
The second is that it is perhaps more useful to view the GFF as acting a space of
suitably smooth test functions rather than on a space of signed measures. In the
next subsection we will allay both of these hesitations by using the eigensystem of
the Laplacian.

3.2. Refining the Construction. To enrich our understanding of the GFF past
that of the basic definition, we work in a bounded domain D so that spectral
decompositions can be leveraged in interesting ways. In particular, this will allow
us to view the GFF in more concrete terms, both probabilistically and analytically.
For the first of our concerns, we show that there is in fact a construction of the
GFF using just a sequence of independent standard Gaussian random variables.

Lemma 3.3. If {Z;}jen is a sequence of independent standard Gaussian random
variables, then the random variable I'p : Mp — R defined for u € Mp via

Z,
(3.2) Ip(p) = = | ¢;(z)dp(x)
DM jze;] \/Z/D 12

is a GFF in D. Conversely, for any GFF T'p in D, there exists a sequence of inde-
pendent standard Gaussian random variables {Z;}jcn such that T satisfies (3.2).

Proof. Note that in the setting of bounded D, the diagonalization (2.4) allows us
to write the covariance kernel in the following concrete form:

S, 12) = /D Gl dy()die(y)

1
- /D X @) | dm@dna)

jeN "J

1
=Y 5 [ s [ 6w duw.
jEN k JD D
This proves the first claim, since we see that defining " through (3.2) immediately
leads to the right covariance structure. For the second claim, use the calcula-

tion above to see that, if we define the measures p;(dz) = ¢;(z)dx for j € N,
then we have X(u;, p;) = /\j_ll{z’ = j}. In particular, the random variables
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{v/Ai (1)} en form a sequence of independent standard Gaussians. Then define
the Gaussian process

(3.3) =3 Toluy) [ 0yfa)duta
jeN

which we will show is almost surely equal to I'p. Of course we have
(3.4) Var(p(p) —Tp(p)) = Var(Tp(p)) + Var(T'p(p)) — 2Cov(Tp (i), Tp(p)),

and it is straightforward to compute:
Var(Pp (1)) = Var(T'p () = Cov(['p (1), Tp (1)) = (11, 1)

from the form of the covariance kernel we derived earlier, hence T p(p) = Tp(p)
almost surely. This finishes the proof. O

For the second concern, we ask whether I'p can be defined as a random process
assigning real values to some family of smooth test functions rather than to signed
measures. By the above result, it is tempting to try to regard I'p the inner product
with the random element

(3.5) =3 A =0
jeN

in a suitable Hilbert space. It is natural to consider H}(D), since then vp rep-
resents a sort of canonical Gaussian element of this space. However, the series
diverges almost surely in H$ (D), since {¢j/1/A;}jen is an orthonormal system and
> jen Z; = oo almost surely.

Not all hope is lost, however, since we can view this random sum in weaker
Hilbert spaces and ask if we get convergence therein. A natural second guess is to
consider this sum in L?(D), but it turns out that convergence still fails:

Lemma 3.4. The series (3.5) diverges in L?(D) almost surely.

Proof. Fix A > 0. Then define, for each j € N,

Z.
(3.6) Xj:TjT¢j’
J
and
3.7 Y, = X, 1{||X <Al = Z; 1{72 < A2\
(3.7) 5= XY X;ll2py < }fﬁ H{Z5 < A°);}
J

When viewing these as L?(D)-valued random variables, we can compute:

Var(Y;) = Alle[Zfl{|Zj| < AV

i Loenl(5):
= — u“exp | —— | du.
2w Jay/x; 2

Also recall the well-known asymptotic formula

(3.8) /2 u? exp (-“22) du =21 -0 (exp (-‘i))
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for a — oo, so that we have

(3.9) Var(Y;) = Alj -0 (exp (—A?J‘ )) .

Now recall by Weyl’s law that we have A; ~ caVol(D)j?/¢ as j — 0o, hence
1 A2 (Vol(D))?52/4

3.10 Var(Y;) ~ —————~ — O — d .

G10) rlh)~ s = (e )

The second term is summable in j € N, so we have > . _ Var(Y;) < oo iff

1
(3.11) E W < 00,
JEN

JEN

and this holds true iff d < 2. Since we are only interested in d > 2, the sum of the
variances always diverges. Finally, recall by Kolmogorov’s three-series theorem that
the sum of the variances converging is a necessary condition for (3.5) to converge
almost surely, whence the result. ([

The proof of the preceding result illustrates why we usually exclude d = 1 from
the theory of GFF: It is the only dimension in which the GFF turns out to be a
bona fide function. The “interesting” behavior occurs only when d > 2 wherein
we need to make sense of the GFF as random elements of some Sobolev spaces of
negative order:

Lemma 3.5. The series (3.5) converges in H~°(D) for all s > £ —1 almost surely.

Proof. Since sums of independent random variables converge almost surely when
the sum of the variances is finite, it suffices to show

Z; 1
(3.12) > Var (L%) = 9515,

is finite. (Here, “Var” indicates variance as Hg °(D)-valued random vectors.) To
do this, note first that we have

(3.13) 1003,y = D_ A *(brs B5)rapy = A; -
keN

Moreover, recall by Weyl’s law that we have \; ~ chOI(D)j2/d as j — oo. Hence
the sum of variances is just

Z; 1 1 1
(3.14) ZVar <\/>\7¢]> - Z )\;J”S -~ (caVol(D))1+s %j2(l+s)/d'

jJEN JEN

Of course, this value is finite iff 2(1 + s)/d > 1, and this rearranges exactly to the
stated inequality, s > % - 1. (]

Dual to our prior comment, the proof of the preceding result illustrates why
d = 2 is the most interesting dimension in which to study the GFF: In this setting,
the GFF can be viewed as a random element of every Sobolev space of strictly
negative order. In other words, the GFF is an element of HS*(D) and hence “just
shy” of being an element of H)(D) = L?(D).

We also explain that the GFF in any dimension has a natural type of Markov
property. We have already seen that the GFF can be regarded as a generalization



12 ADAM QUINN JAFFE

of Brownian motion to two or more dimensions, so it is natural to hope that some
form of the temporal Markov property persists as a type of spatial Markov property,
and indeed this is the case. Roughly speaking, conditional on observing I' p, on some
compact subset A C D, distribution of I'p in the domain D\ A is a GFF I'p\ 4 in
D\ A subject to non-zero boundary conditions at dA. While we do not develop
this idea further, we remark that this is one of the most impotrant features of the
GFF, and it can be used to show that many interesting objects (for example, large
families of independent Brownian motions) are embedded inside the GFF.

3.3. The Case of Dimension Two. Of course, there are many other reasons that
d = 2 is the most interesting dimension for the GFF. Primarily, these interesting
properties can all be traced back to the symmetries of the Green’s functions in
the plane which we studied in the last section. The most important of these is a
conformal invariance result.

For convenience, let us adopt the following notation. If I' = {I'(1)}, is some
stochastic process indexed by a space of measures in P(D) and ¢ : D — D’ is
any map bijection, write I" o ¢ for the stochastic process {I'(y')}, s defined via
I"(p') =T(i o ¢), whenever the domains of definition make sense.

Lemma 3.6. Suppose that ® : D — ®(D) is a conformal equivalence which extends
continuously to a homeomorphism ® : D — ®(D). If'p is a GFF in D, then the
I'po® is a GFF in ®(D).

Proof. Write I'" = {I" (/') },re My py = I'p © @, s0 that we have I'(u') = I'p(p' 0 @)
for all 1/ € Mg(p). By Lemma 2.8 and a simple change of variables, we get

Cov(I" (1)), I (43)) = Cov(T'p(uy © @), Tp(ps o P))

_ / G (2, y) d(j1} o ) ()d(uh 0 @) (x)
DxD

_ / Gy ((x), ®(y)) d(it; o ) (x)d(jil o B)(x)
DxD

_ / G (B(x), ®(y) dyr (' dpih (o)
&(D)xd(D)

so I'” indeed has the correct covariance structure. O

As we remarked before, this is result is of little value in its current form, but
stronger true statements can be easily derived from analogous stronger true state-
ments about conformal invariance for the Green’s function.
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