DISORDERED SYSTEMS, RANK-ONE MATRIX ESTIMATION,
AND HAMILTON-JACOBI EQUATIONS

These notes were taken during the Online Open Probability Summer School
(OOPS) in 2020, based on the lectures of Jean-Christophe Mourrat called “Disor-
dered Systems and Hamilton-Jacobi Equations” or “Rank-One Matrix Estimation
and Hamilton-Jacobi Equations”. The content essentially follows the papers [2]
and [3] but also draws on the more general text of [I]. The flow of ideas is mostly
chronological as presented by Mourrat, but, for the sake of completeness, I have
inserted the proofs of some claims that he left as “exercises to the audience” during
the talks.

1. INTRODUCTION

We begin with some definitions of very classical ideas in statistical mechanics.
Let N > 0 be fixed and consider a collection of particles denoted {1,... N}. Now
let {Jij}f-\fj:l be independent standard Gaussian random variables which denote
the repulsion/attraction between particles i and j, and let o € {+1,—1}" denote
any assignment of spins to our particles. A natural question, with motivations in
physics about minimizing a certain energy, is to solve the optimization problem

maximize Z JijH{o; = o5}
1,J
over oc{+1,-1}"V.

Note that 1{o; = 0;} = (00, + 1), so > Jijoioy =232, i Jijl{o; = oj} —
> j Jij. Since the first term just applies a positive scaling and the second term
does not depend on o, a problem with the same solution is the following:

maximize E Jijloio;
)

over o€ {+1,-1}".

Observe that the solution to either optimization problem is random since they both
depend on the random weights {.J;;}];_;.

An easier question is to take J;; to be deterministically equal to 1. Then the
optimal configuation is the one which assigns all particles to spin +1 (or, all particles
to spin —1). The difference between our problem and the simpler problem is that,
the optimal configuation for a diverse range of values of the J;;’s will not be one that
satisfies the forces of every individual pair. Rather, some pairs will be “frustrated”
in order to reduce the overall objective. Such system are often called “disordered”.
In either case, the addition of some other term in the potential may cause the
optimal configuration to be one which differs from this “ground state”.

In the terminology of statistical mechanics, the model with J;; =1 is called the
Ising model and the model with J;; ~iq N(0,1) is called a spin glass model. In
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either case we can view these as models of particles systems on a complete graph,
so obvious generalizations can be made to general graphs, a common example being
the lattice Z¢ C R with its nearest-neighbor structure.

(Mourrat included another motivating example in his talk: Suppose that, at
Hogwarts, there two houses called +1 and —1 and there are N students named
{1,...N}. Let the “quality of interaction” between student ¢ and j be denoted by
Jij, which we assume are iid N(0,1). The job of the sorting hat is the find the
optimal configuation of this spin glass model, i.e. to optimize the total quality of
interaction among all students. However, I find this analogy quite strange, because,
if T recall correctly, the sorting hat assigns students to houses in an online way for
which this kind of global optimization seems impossible.)

If the maximum of the objective o — Z” Jijoio; is much bigger than the
objective of the suboptimal configurations, then we expect a soft-max to be ap-
proximately equal to the true maximum. In othern words, for any 5 > 0, we
expect

1 B
(1) max Zjijo—iaj ~ E 710g Z exXp 72Jijai0‘j
oce{£1}N 7 N se{E1}V v N 07
Here the normalizing constants have been chosen to reduce each term to approxi-
mately constant order. The measure on {£1}" whose density is

2 ex — Jiio,0
(2) p N EU, 7003

with respect to the uniform measure on {£+1}¥ is called the Gibbs measure of this
particle system, and the parameter 3 is called the inverse temperature. This family
of measures (which are random since they depend on the random weights) plays a
fundamental role in understanding the given particle system.

It turns out that this type of model from statistical mechanics can help in an-
alyzing a certain problem in statistical inference, which we now outline. Suppose
that T is a random vector in RY with iid entries sampled from some distribution P
of compact support. Now suppose that W = {Wij}ﬁ\fj:l is a matrix of iid N(0,1)
random variables. An important problem in (Bayesian) statistical inference is that
of estimating the rank-one matrix TZ© after observing the noisy matrix

(3) Y:M%HT—I—W

(Here, we have the normalizing constant of 1/2/N mostly for convenience of some
calculations.) The paramter ¢ > 0 represents the signal-to-noise ratio of the infer-
ence problem, whereby for large ¢ we expect prediction to be “easy” and for small
t we expect prediction to be “hard”.

The fact that the spin-glass model and the rank-one matrix factorization problem
have anything to do with each other is a bit surprising at first glance. As one
piece of evidence, consider the relationship between the parameters [ and ¢: It
is known (from previous literature) that both problems exhibit a phase transition
with respect to their respective parameter: In the spin-glass model, there exists
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a critical inverse temperature (. such that the optimal configuation is relatively
random when < . and relatively ordered when 8 > f.; Likewise, there exists a
critical signal-to-noise ratio t. such that estimation of the true matrix is impossible
when t < t. and possible when t > t.. As we later see, this similarity is no
coincidence, and it has largely to do with the form of a certain Gibbs measure
associated to both problems.

2. THE CURIE-WEISS MODEL

For this section, we’re going to study a specific interacting particle system where
we can develop some tools. This setting is not exactly the same as that of our spin
glass model for rank-one matrix estimation, but it is relatively easy and we can
get the general idea of the analysis. Our focus is the Curie- Weiss model, which
was originally developed as a mathematical model for the physical phenomenon of
ferromagnetism.

Let N > 0 be fixed and also consider two reals ¢ > 0 and h € R, which we will
later vary. Now consider the measure p on {£1}" which, to each configuration
o € {£1}V assigns the probability

exp (% Z” 0i0;+h), O‘i)
Soeqeny oxp (& X, 0lo) +h Y, o)

Viewing the bottom term as just a normalizing constant, we can regard the proba-
bility of each configuration as consisting of two pieces: an internal interaction term
akin to that of the Ising model, and an external potential term corresponding to
the effect of a magnetic field on the system. That is,

(4) p({o}) =

Ising model magnetic field

t
(5) u({o}) oc exp NZUNJ‘-F hzoi
i, 0,J

Hence, the parameters ¢ and h represent, respectively, as the inverse temperature
of the particle system, and as h is the intensity of the magnetic field. Our main
object of interest is actually the case of h = 0, but it turns out that this “enriched
potential” will be a more convenient object of study.

As we will later see, it is most helpful to try to understand the normalizing
constant of the probability density function of u, so we define the following:

1 t
(6) Fn(t,h) = i log Z exp | & Z 0i0; +h Z o;
ce{£1}V i i

Observe that Fy is a just the logarithm of a finite sum of exponentials, hence we
have Fiy € C*(R; x R;R).

To see where the Hamilton-Jacobi PDE enters the picture, let us take some
derivatives of Fiy(t, h) in order to derive some relations among them. As some useful
notation, for any measurable f : {1} — R, let (f(c));., denote expectation with
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respect to the measure p where t and h are the given parameters. Taking one
derivative in both the ¢ and h directions, we get:

Note that these equations together yield

2
(7) 5‘tFN—(8hFN)2: <<]]\-[ZUZ> > — <Z]\-ZZO'Z>
i t,h % t,h

where the right side is equal to the variance of the random variable + Y, 0; and
is hence nonnegative. Physically, % >, 0 represents the (empirical) mean magne-
tization of the system, so 0, Fy = (& Y., 0)s,» Tepresents the (population) mean
magnetization. Let’s take this calculation one step further: Taking another deriv-
ative in the h direction gives

| ’ 1
o an-g((Z4)) % ((ze) |

and we recognize this as just N times the variance in the equation above! On the
one hand, this is nonnegative, so, for each fixed ¢ > 0, the function F is convex in
h. On the other hand, this proves that the function F solves the PDE

2

1
(9) O Fn — (OnFn)? = NaﬁFN.

This is not exactly the Hamilton-Jacobi PDE, but it is not so different. Since the
empirical mean magnetization 1 Y, o; is bounded beteen —1 and +1, its variance
is bounded between 0 and 1. This implies that, as N — oo, the right side converges
to 0. So,we expect that the limiting behavior of the normalizing constant of the
particle system Fi, must be, in some sense, a solution to the true Hamilton-Jacobi
PDE 0;F — (0nFx)? = 0. The exact sense in which F,, is a solution, however, is
a bit subtle and will deserve more attention later.

Let’s also spend a moment thinking about the initial condition of this PDE (or
rather, this family of PDEs). For any N > 0 and any h € R, note that we can
compute:
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where we have defined 1 by the last equality. Interestingly, we see that the initial
condition does not depend on NV, so it is the same across the entire family of PDEs.

Finally, recall that our main object of interest is the function Fy(t,0). Since
this is just the logarithm of the moment generating function of the random vari-
able 3 37, ;070 with respect to the uniform measure on {£1}", we can recover
everything about the distribution of this random variable from Fy(t,0) alone. In
the case of finite IV, there are, of course, many ways to understand the distribution
of % Zi, ; 0i05; however, in the limit as N — oo, the approach is not so clear. This
idea of introducting a PDE that Fy must solve will lead us to a PDE that F
must solve, and hence we can understand the distribution of the (weak) limit of the
random variables % Zi, ;0i0; as N — o00. To do this analysis, the next step is to
understand the PDE that we have derived.

3. HamirTon-JAcoBI PDE

Consider the following PDE, where f and v are general functions not necessarily
related to the specific forms described in the previous section:

Fi(Ry): xRy = R,
(*) of—(Onf)* =0,
f(0,h) = p(h).

This is the Hamilton-Jacobi PDE with initial condition ¢ and it provides an im-
portant tool for analyzing the particle system(s) of the previous sections.

What is the sense in which a function can be a solution to ? A good first
attempt is to require that f be a C! function which satisfies the PDE pointwise.
However, we now make a heuristic argument that this notion of solution is too strong
for our primary example—the large-N limit of the log moment-generating function
of the Curie-Weiss model F,, = limy_,o, Fxy—to be a solution; the argument is
based on the existence of a critical threshhold ¢, and the interpretation of 9, F (¢, h)
as the mean magnetization: If ¢ < t., then the spins {o;} ; are assigned more-or-
less randomly according to h, so we expect 9y, F(t, h) to vary quite smoothly in A
and everything is nice. On the other hand, if ¢ > ¢., then the spin configuration has
more structure and is more robust to changes in h. Specifically, we expect that the
mean magnetization Oy F (¢, h) remains bounded away from 0 from below as h |, 0,
and simultaneously that 9, F (¢, h) remains bounded away from 0 from above as
h 1 0. In other words, we expect that the cross-sections of the function F (¢, h)
can be roughly visualized as follows:
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Al
1) 1)

Feo(t, ) Feo(t, 1)
t <<t t>te

Therefore, it appears to be too restrictive to assume that our solutions are contin-
uously differentiable.

A second guess is to require that f be Lipschitz in both ¢ and h and that it satisfy
the PDE almost everywhere. (Recall that a Lipschitz function is differentiable
almost everywhere with respect to the Lebesgue measure.) However, we now argue
that this notion of solution is too weak to determine a unique solution based on
given initial data: If we start with the initial condition ¢(h) = 0 for all h € R, then
we can construct two distinct solutions. One solution is f(¢,h) = 0 for all (¢, h),
which is Lipschitz in both variables satsifies the PDE everywhere. Another solution
consists of a “growing triangular pulse”, which can be described best through the
following figure in which we plot, for purposes of illustration, the functions f(0, k),
f(%’h)v and f(1,h):

N
v
A
v
A

-

1
£(0,h) (1) f(1,h)

This function is also Lipschitz in both ¢ and h, satisfies the PDE almost everywhere,
and has the right initial condition.

So, our notion of solution must be somewhere in between these extremes, and it
turns out that the following definition strikes the right balance:

Definition 3.1. We say that a function f : (Ry); X R, — R is a weak solution
to if the following conditions are satisfied: the map h — f(¢,h) is convex and
uniformly Lipschitz over all ¢ > 0 (that is, there exists a constant C' > 0 such that
|f(t,h) — f(t,h')| < Clh — K| holds for all t > 0 and h,h’ € R, and we let || f||Lip,n
denote the smallest such constant), the map ¢ — f(¢,h) is Lipschitz for all h € R
(but the Lipschitz constant may depend on h), the equality f(0,h) = t(h) holds
for all h € R, and f satisfies almost everywhere.

Note that this notion of weak solution is different from the notion of wiscosity
solution, the latter being slightly more standard in analysis of Hamilton-Jacobi
PDE. For our purposes, this concept of weak solution is more appropriate, and the
“correctness” of the definition is established by the following result:

Proposition 3.2. For any given Lipschitz, convex function ¢ : R — R, there exists
a unique weak solution of the Hamilton-Jacobi PDE (|«), given by

(10) Fie.h) = sup (i1 - “”2) .

h'eR 4t
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This explicit form is known as the Hopf-Lax formula.

Proof. For existence, we only need to verify that the Hopf-Lax formula yields a
weak solution of . This is straightforward and we omit these details for now.

For uniqueness, we will prove the result as a consequnce of a “local L;’O—L}L energy
estimate” method. Suppose that f and g are both weak solutions of with the
same initial condition. Define L = || f||vLip,n + ||g||Lip,» + 1 and define the function
¢ : R — R by ¢(x) = 22/(1+2?), which we see has values bounded in [0, 1) is equal
to zero if and only if its argument is zero, and has derivatives bounded in [0, 1/v/2).
Now set w(t,h) = f(t,h) — g(t,h) and v(t,h) = ¢(w(t, h)), and note that there is
an almost-everywhere-defined function b(t,h) = 0y f(t,h) + Ong(t, h) such that v
satisfies the PDE

(11) Opv(t,h) — b(t, h)opv(t,h) = 0.
In the remaining, we may omit the arguments (¢, h) from the notation whenever it
is clear from context. Now fix some end-time 7' € (0, 00), and define the functional:

L(T—t)
(12) J(t) :/ v(t, h)dh.

—L(T—t)
Note that v(t,h) is almost-everywhere differeniable in ¢ and uniformly bounded.
So, we can differentiate under the integral (note that the limit of integration also
depend on t), yielding:

dJ L(Tft)
az Yo / Oy0(t, h)dh — Lo(t, L(T — 1)) — Lu(t, ~L(T — 1)).
dt ) _pir—v

The next step would be to apply the PDE for v and use integration by parts. How-
ever, the fact that b is not differentiable in h necessitates an extra step of “smooth-
ing” our functions. Let ¢ € C*°(R;R) be a mollifier, in the sense that supp(¢) C
[—1,1] and [, ¢(h)dh = 1. Now for each ¢ > 0, define ¢.(z) = e 'p(z/¢), and
then

(14) feltoh) = [ =)o

Observe that, for any fixed ¢ > 0, the function h — f.(t, h) is both C*° and convex,
and satisfies O fo(t,h) — Onf(t, h) for almost all values of h € R; we can define
the function g. analogously, and we get the same properties. Now we can define
b. = O f- + Ong- and, for any fixed ¢t > 0, this function C*° and non-decreasing in
h, and satisfies b.(t,h) — b(t, h) for almost all h € R. The PDE solved by v can
now equivalently be written as

(15) Opv = Op(bv) + (b — b.)Opv — vORD.,

which holds almost everywhere. Substituting this into the integral for dJ/dt, we
get:
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% = (bs(t, L(T —t)) — L)v(t, L(T — 1) + (ba(a —L(T —t)) — L)v(t, ~L(T — 1))

L(T—t)
+ / ((b - ba)ah’l) - v@hbs)dh.
—L(T—t)
Note that, by construction, we have b < L wherever b is defined, and hence it
follows that b. < L. Since we have v > 0 everywhere, this implies that the first two
terms above are both non-positive. So, we have

L(T—t)
dJ <

(16) (b — b2)Ohv — vIub)dh,

dt = J_pr—v
and it only remains to analyze these remaining integral terms. For the first term,
note that we have b — b, — 0 for almost all h € [-L(T —t), L(T —t)] and that (b—
b )Opv is bounded above, so dominated convergence gives fféi(rT_i t)( (b—b.)0pv — 0
as € — 0. Moreover, note that we have 9,b. > 0 and v > 0, so the second term
(inculding the sign) is non-positive for all € > 0. Therefore, taking the limit as
e — 0 gives

dJ
a7) <o
as we hoped for.

Now we use the standard method to get uniqueness from the energy-estimate:
Since f and g have the same initial condition, we see that J(0) = 0 holds. Now J,
being the integral of the nonnegative function v, has J(t) > 0, so dJ/dt < 0 implies
J(t) =0 for all t € [0,7T]. Fixing ¢t > 0 and taking the limit as 7' — oo, monotone

convergence gives

(18) J(t) = /Rv(t, B)dh = 0,

This forces v(t, h) = 0 for almost all h € R, hence w(t, h) = 0 for almost all h € R.
Since w(t, h) is (uniformly) continuous in h and since we have w(t,h) = 0 for a
full-measure hence dense set of h € R, it follows that we have w(¢,h) = 0 for all
h € R. Since t > 0 was arbitrary, this shows that we have f(¢,h) = g(t, h) for all
t>0andall h e R O

4. MAIN RESULTS

In this last section we combine these ideas from statistical mechanics, analysis
of PDE, and statistical inference into the precise statement and proof sketch of the
main results.

As areminder of the setting, we assume that Ty, ...Zy are iid samples from some
distribution P on R of bounded support and that W is a random N x N matrix
with iid N(0,1) entries. Suppose we observe

[2t
(19) Y = NﬁT-I-VV.
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and that our goal is to predict T from just the data Y. To do this, we consider the
following error:

(20) MSEy () = % inf [||ﬁT - é(Y)H%}

where the infimum is taken over all possible estimators 9(Y) of Zz ', and the ex-
pectation is taken over two sources of randomness: the souce of the sampling of T
and the source of the noise in the data Y.

It is well-known in Bayesian statistics that the optimal estimator of T given
Y is just the conditional expectation 6(Y) = E[ZzT|Y], so a natural first step is
to understand the conditional distribution of Z given Y. To do this, define the
potential

. 2t t
H{(t,x) = \/;<Y73?3?T>F - NHng
51 o,
= R W)+ 2D - L

where (-, -) p denotes the Frobenius inner product. Now define the functional {f(z))
as

o

o _ Jef(@) exp(HY (¢, 2))dP" (z)
Jr exp(HR (1, 2))dPEN ()

(21) (f(x))

for any bounded measurable f : RY — R. By slight abuse of notation, we use
the same symbol (-)° to denote the product measure over multiple copies of this
distribution. It turns out that this definition is useful because, it can be shown,
that we have (f(z))° = E[f(Z)|Y]. Here, note that ¢ can be seen as interpolation
parameter for the conditional distribution of T given Y: If ¢ = 0, then we simply
draw a new copy of an independent random variable from the distribution P®V;
as t — oo, we simply output the exact value of T. The random variable z, the
statistical mechanics literature, is called a replica.

Now let’s use this observation to make some simple manipulations leading to
a highly non-trivial result. The following result can be seen as the machine that
makes this entire theory work:

Lemma 4.1 (Nishimori’s Property). Let x1, ...z, be iid copies of the conditional
distribution of Z given Y. Then we have E [(f(z1,...2m,))°] = E[(f(z1,... Tm-1,T))°]
for any measurable f : RV*™ — R for which the expectations are well-defined.

Proof. By conditional independence, the fact that (f)° is o(Y)-measurable, and
the tower property, we have the following for any bounded measurable functions
fi, o fm :RY 5 R:
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E[{fi(z1) - frm(2m))°] = E[(f1(21))° - (fm—1(@m—1) (fm(2m))°]
=E[(fi(z1))° - (fm-1(2m-1)) E[fm(@)|Y]]
=E[E[(f1(21))7 - (fm-1(2m-1))° fm (Z)[Y]]
=E[E[(fi(z1) - fm-1(Zm-1)fm(T))°|Y]]
=E[(fi(z1) - fm-1(@m-1)fm(Z))°].

This proves the result for functions that are products of functions depending on one
coordinate alone, so the general result follows by applying linearity of the integral
and the monotone class theorem. (]

Remark 4.2. Nishimori’s property can also be generalized to include functions
that depend on Y, i.e. for any measurable function f : RV Xm+NxN 4 R we have
E[{(f(z1,.. - zm, Y))° ]| =E[{f(z1,...2m=1,%,Y))°]. We will need this more general
result, but we do not prove it here.

The reason Nishimori’s property is so important is as follows: Taking partial
derivatives of the log-normalizing constant for the Gibbs measure of a particle
system will introduce new replicas into the analysis, and these can often become
very hard to keep track of. However, Nishimori’s property tell us that we can always
“relate things back” to the original variable T and this helps keep the calculations
simple.

We can already start to see where the analysis of spin-glass systems will connect
to the analysis of rank-one matrix estimation: The conditional distribution of T
given Y is just a (random) Gibbs measure with an exponentially-tilted probability
density with respect to the measure P®N on RY. Moreover, the potential contains
as its main term, (z, Wx) = Z” Wi;x;2; which is exactly the interaction potential
of the spin-glass system. The remaining terms, while not negligible in order, are
mathematically convenient and don’t have a great physical interpretation at the
moment.

Taking a lesson from the analysis of the Curie-Weiss model, we can under-
stand the rank-one matrix estimation problem if we understand the log moment-
generating function of our potential. However, we should make sure “enrich” the
potential before doing this, so that there are two variables among which some dif-
ferential identities can be derived. The difficulty in this seting is that we must do
this in a way which preserves Nishimori’s property.

To do this, let A > 0 be fixed. Suppose that, in addition to observing the matrix
Y, we also observe the vector

(22) y = V2hx + w,

where w is a vector in RY of iid N(0,1) random variables, independent of Z and
Y. Now to discuss the conditional distribution of T given Y and y, we define

(23) Hy(t,h,z) = H(t, ) + V2h(z,y) + 2h(z, ) — hl |z

Also set
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- ey  Je @) U (b)Y (x)
- fR eXp(HN(ta h,x))d]P’®N(x)
It can be proven, in the same manner as before, that for any bounded measurable
f:RY = R, we have (f(z)) = E[f(Z)|Y, ]
Now we make some definitions about the moment-generating function of a certain
random variable. Define

Fn(t,h) = %log (/R exp (Hy(t, h,x)) dP®N(x)> ,

Fn(t,h) =E[Fx(t,h)].

Since the Gibbs measure is now random, we have to define a random moment
generating function and an average one. (This is not particular to matrix estimation
problems. In the analysis of the spin-glass analog of the Curie-Weiss model, we also
would have had a random Gibbs measure.)

Now we can finally state the main result of the relevant papers.

Theorem 4.3. There exists a weak solution f to the PDE

[ Ry)e x (Rzo)n = R,
(25) O f — (Onf)* =0,
f(0,) = F1(0,),
such that the functions {Fy}$%_, satisfy F,, — f locally uniformly.

Sketch of Proof. The proof consists of several steps, which we outline but do not
prove here. First, use Stein’s lemma (Gaussian integration by parts) and Nishi-
mori’s property to derive the relations

OnFn(t,h) = E [<£”N“””>}

ool

From these, we can show that Fy satisfies the PDE

(26) OF ~ (hFN)? = 3B [(({e,7) — El(z, B)?)]

Next we show that the right side can be bounded above by

(27) %IE (((z,T) — E[(z,7)])?)] < %82?1\; +E [(OhFN — OhFN)?] .

The first is exactly the term that we had in the case of the Curie-Weiss model,
and the second term arises from the noise in the internel potential arising from
the random weights in W. Using some concentration inequalities (the Gaussian
Poincaré inequality and the Efron-Stein inequality), we can show that the right
side goes to 0 and this can be used to finish the proof. [



12 DISORDERED SYSTEMS, RANK-1 MATRIX ESTIMATION, AND H-J EQUATIONS

Given this result, we can derive properties of the large-N limiting particle system
by studying the function f(¢,0) and its derivatives; equivalently, we can understand
the statistical problem of rank one matrix inference through this same function
f(t,0). Using the Hopf-Lax formula, we can get a relatively explicit solution for
each N, and by taking N — oo we can use this to determine properties of the
limiting system. In particular, this result can be used to show the existence of the
phase transition, that there exists a parameter t. such that for ¢ < t. the MSE does
not decay and that for ¢t > t. the MSE decreases with t¢.

Finally, we remark that the paper [3] details this argument much more carefully,
but for the more general setting of low-rank matrix estimation. This affects the
analysis of the Hamilton-Jacobi PDE in that weak solutions only require that the
marginal function h — f(¢,h) be “locally semiconvex” as opposed to the case of
rank-one matrix estimation in which it was required to be convex. So, the argument
and notation appears to be different from those appearing in this note, but the
fundamental ideas are mostly the same.
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