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1. Introduction

The notion of hypercontractivity first arose in quantum field theory [3] and
underwent much development in functional analysis and mathematical physics
throughout the subsequent decade [4, 7]. While the concept had existed in some
form or another for some time before this, E. Nelson is credited with casting this
collection of ideas into the same setting [6]. It was later discovered that this con-
cept is closely related to certain concentration of measure phenomena, and this
has sparked a great interest in this concept from probabilists; the monograph [2]
contains a comprehensive account of these developments.

In this note we explore the basic principles of hypercontractivity and its relation-
ship with concentration of measure, focusing on the setting of Gaussian measures
where explicit computations can be made. Our exposition mainly follows the ac-
counts in [1] and [2, Chapter 5 and Appendix B], but we have filled in much of the
technical detail. We also provide citations to other sources where helpful.

2. Hypercontractivity

In this section we introduce the basic notions that will be used in this note. We
mainly follow the abstract setting of [7, Section 2A].

Let (S,S) denote a measurable space, and writeM(S) be the vector space of all
measurable functions from Ω to R. For a measure µ on (S,S), write Lp(µ) for the
subspace of M(S) consisting of all functions with finite p-th moment, and write
|| · ||Lp(µ) for the usual norm that makes this into a Banach space. Throughout this
note, we will always assume that (S,S, µ) is a probability space.

Write C(Rn) for the space of continuous functions from Rn to R. We include sub-
scripts c, b, and 0, to denote the subspaces of such functions which are compactly-
supported, bounded, and vanishing at infinity, respectively. We include the super-
script k to denote the subspaces of such functions which are k-times continuously
differentiable. We of course combine these notations, so that, for example, C2

c (Rn)
denotes the space of compactly-supported, twice continuously differerentiable func-
tions. Often these spaces are endowed with a supremum norm (or a combination
of supremum norms on some of its derivatives), but we will not do so in this note
unless explicitly stated.

By a semigroup {Pt}t≥0 on a Banach space (B, ‖ · ‖) we mean a family {Pt}t≥0
of (possibly unbounded) linear maps satisying the composition rule PtPs = Pt+s

1
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for all s, t ≥ 0. A semigroup is called strongly continuous if for all x ∈ B, we have
‖Ptx− x‖ → 0 as t→ 0.

Assumptions. Suppose that (S,S, µ) is a probability space and that {Pt}t≥0 is a
family of linear maps on L∞(µ) which extends to a family of linear maps on Lp(µ)
for all p ∈ [1,∞] such that the following properties are satisfied:

(A1) For each p ∈ [1,∞], the family {Pt}t≥0 is a semigroup on (Lp(µ), ‖ ·‖Lp(µ)).
(A2) For each p ∈ [1,∞] and t ≥ 0, the map Pt : Lp(µ)→ Lp(µ) is self-adjoint.
(A3) For each t ≥ 0, the map Pt : L2(µ)→ L2(µ) is unitary.

When we say {Pt}t≥0 is a semigroup on (S,S, µ), it will be understood that it
satisfies the assumptions above.

We will later specialize to the case of the transition semigroup of the Ornstein-
Uhlenbeck process along with the standard Gaussian measure on finite-dimensional
Euclidean space, and we will see that this pair satisfies the assumptions above.
However, for now, we choose to deal with the abstract case.

Definition 2.1. A semigroup {Pt}t≥0 on (S,S, µ) is called hypercontractive if the
following conditions hold:

(1) We have ‖Ptf‖L1(µ) ≤ ‖f‖L1(µ) for all t ≥ 0 and f ∈ L1(µ), and
(2) There exists some T ≥ 0 and some C > 0 such that we have ‖PT f‖L4(µ) ≤

C‖f‖L2(µ) for all f ∈ L2(µ).

This notion is rather strong: the hypothesis (1) is called “contractivity” for
obvious reasons, and the hypothesis (2) guarantees that one can bootstrap a priori
bounds on L2(µ)-norms (quantitatively!) to further bounds on L4(µ) norms, hence
the name “hypercontractivity”. (Nelson himself suggests [6] that a better term for
(2) would actually be “hyperboundedness” since the constant in need not be equal
to 1.)

It turns out that hypercontractivity is equivalent to another set of conditions,
which, a priori, appears to be much stronger.

Lemma 2.2. A semigroup {Pt}t≥0 on (S,S, µ) is hypercontractive if and only if
the following conditions hold:

(1’) For any p ∈ [1,∞], we have ‖Ptf‖Lp(µ) ≤ ‖f‖Lp(µ) for all t ≥ 0 and
f ∈ Lp(µ), and

(2’) For any p, q ∈ (1,∞), there is some T ≥ 0 and some C > 0 such that
‖Ptf‖Lq(µ) ≤ C‖f‖Lp(µ) for all t > T and f ∈ Lp(µ).

Proof. The “if” direction is immediate, so we only need to show the “only if”
direction, that is, that {Pt}t≥0 being hypercontractive implies (1’) and (2’). For
(1’), note that for any t ≥ 0, and any f ∈ L∞(µ), the duality between the L1 and
L∞ norms and assumption (A2) together imply:
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‖Ptf‖L∞(µ) = sup

{∫
S

|Ptfg|dµ : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
= sup

{∫
S

Ptfg dµ : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
= sup

{∫
S

fPtg dµ : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
= sup

{∫
S

|fPtg|dµ : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
≤ sup

{
‖f‖L∞(µ)‖Ptg‖L1(µ) : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
= ‖f‖L∞(µ) sup

{
‖Ptg‖L1(µ) : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
≤ ‖f‖L∞(µ) sup

{
‖g‖L1(µ) : g ∈ L1(µ), ‖g‖L1(µ) ≤ 1

}
≤ ‖f‖L∞(µ).

This shows that Pt : L∞(µ)→ L∞(µ) is contractive. By the Riesz-Thorin theorem,
this implies that Pt : Lp(µ)→ Lp(µ) is contractive for all p ∈ [1,∞], as claimed.

For (2’), note by assumption that PT is bounded from L2(µ)→ L4(µ), and that
it is bounded from L∞(µ) to L∞(µ) by (1’). Applying the Riesz-Thorin theorem
gives that PT is bounded from Lm(µ)→ L2m(µ) for all integers m ≥ 2. Composing
these maps shows that, for each n ∈ N, the map PT : L2(µ)→ L2n(µ) is bounded.
Now let p, q ∈ (1,∞) be arbitrary, assume without loss of generality that p < q.
Since 2n/(2n − 1) ↓ 1 and 2n → ∞ as n → ∞, we can choose some n ∈ N large
enough such that we have

p0 =
2n

2n − 1
≤ p < q ≤ 2n = q0

Now observe that PT is bounded from L2(µ) to Lq0(µ), hence P ∗T = PT is bounded
from Lp0(µ) to L2(µ). Since PT is unitary, this implies that for all f ∈ Lp(µ) we
have

‖PT f‖Lq(µ) ≤ ‖PT f‖Lq0 (µ) . ‖f‖L2(µ)

= ‖PT f‖L2(µ) . ‖f‖Lp0 (µ) ≤ ‖f‖Lp(µ).

This shows that there exists some C > 0 such that ‖PT f‖Lq(µ) ≤ C‖f‖Lp(µ) holds
for allf ∈ Lp(µ). Then for any t > T the semigroup property and (1’) combine to
give

‖Ptf‖Lq(µ) = ‖PT+(t−T )f‖Lq(µ)

= ‖Pt−TPT f‖Lq(µ) = ‖PT f‖Lq(µ) ≤ C‖f‖Lp(µ)

as claimed. �

3. Background on Stochastic Processes

In this section we will develop some abstract theory about stochastic processes
which is also of independent interest. We mainly follow [1, Chapter 1].
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Suppose that S is a locally compact topological space with a countable basis and
that S is its Borel σ-algebra, and let {Xt}t≥0 be a right-continuous Markov process
in S. That is, let Ω denote the space of all right-continuous paths from [0,∞) to S,
and let F denote the Borel σ-algebra generated by Skorokhod topology on Ω. For
each x ∈ S, the law of {Xt}t≥0 conditioned on X0 = x determines a probability
measure Px on Ω, and the corresponding expectation operator is denoted Ex.

Also suppose that µ is a Borel probability measure on S which is stationary for
{Xt}t≥0. For any f ∈ L∞(µ) and t ≥ 0, note that we have∫

S

Ex[|f(Xt)|]dµ(x) =

∫
S

|f(x)|dµ(x) ≤ ‖f‖L∞(µ) <∞,

and hence that Ex[|f(Xt)|] is finite for µ-almost every x ∈ S. This proves that
Ex[f(Xt)] is well-defined for µ-almost every x ∈ S; we define the transition semi-
group {Pt}t≥0 of {Xt}t≥0 via Ptf(x) = Ex[f(Xt)], and it follows that Pt : L∞(µ)→
L∞(µ) is a well-defined linear map.

Lemma 3.1. If µ is a reversible probability measure for {Xt}t≥0, then the collection
{Pt}t≥0 satisfies the semigroup assumptions of Section 2.

Proof. For (A1), let p ∈ [1,∞] and t ≥ 0 be arbitrary. Then take any f ∈ L∞(S)
and recall that µ being reversible for {Xt}t≥0 implies that it is also stationary for
{Xt}t≥0. Then Jensen’s inequality gives

‖Ptf‖pLp(µ) =

∫
S

|Ex[f(Xt)]|pdµ(x)

≤
∫
S

Ex [|f(Xt)|p] dµ(x)

=

∫
S

|f(x)|pdµ(x) = ‖f‖pLp(µ),

which shows that Pt : L∞(µ)→ L∞(µ) is bounded linear, with respect to the Lp(µ)
norm. To extend this, note that L∞(µ) is dense in Lp(µ), so for f ∈ Lp(µ) we can
get {fn}n∈N in L∞(µ) with fn → f in Lp(µ). Then by the above and Fatou’s
lemma we have

‖Ptf‖Lp(µ) ≤ lim inf
n→∞

‖Ptfn‖Lp(µ)

≤ lim inf
n→∞

‖fn‖Lp(µ) = ‖f‖Lp(µ),

which shows that Pt extends uniquely to a linear contraction Pt : Lp(µ) → Lp(µ).
To see that the composition rule is also satisfied, note that for any s, t ≥ 0 and
f ∈ L∞(µ) we have, by the Markov property of {Xt}t≥0:

PtPsf(x) = Ex[EXs
[f(Xt)]] = Ex[f(Xt+s)] = Pt+sf(x).

This proves that we have PtPs = Pt+s as operators from L∞(µ) to itself, and by
density, also as operators from Lp(µ) to itself. Thus, {Pt}t≥0 is indeed a semigroup
on Lp(µ).

For (A2), let f, g ∈ L∞(µ) be arbitrary, and note that, since µ is reversible for
{Xt}t≥0, we have
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∫
S

Ptf(x)g(x)dµ(x) =

∫
S

Ex[f(Xt)g(X0)]dµ(x)

=

∫
S

Ex[f(X0)g(Xt)]dµ(x)

=

∫
S

f(x)Ptg(x)dµ(x).

Now let p, q ∈ [1,∞] be conjugate exponents, and take any f ∈ Lp(µ) and g ∈
Lq(µ). Get sequences {fn}n∈N in L∞(µ) with fn → f in Lp(µ) and {gn}n∈N in
L∞(µ) with gn → g in Lq(µ). Then by Hölder’s inequality, the contraction property
of Pt, and the fact that self-adjointness already holds for elements of L∞(µ), we
have

∣∣∣∣∫
S

Ptf(x)g(x)dµ(x)−
∫
S

f(x)Ptg(x)dµ(x)

∣∣∣∣
≤
∫
S

|Pt(f − fn)(x)g(x)|dµ(x) +

∫
S

|Ptfn(x)(g − gn)(x)|dµ(x)

+

∫
S

|fn(x)Pt(g − gn)(x)|dµ(x) +

∫
S

|(f − fn)(x)Ptg(x)|dµ(x)

≤ ‖f − fn‖Lp(µ)‖g‖Lq(µ) + ‖fn‖Lp(µ)‖g − gn‖Lq(µ)

+ ‖fn‖Lp(µ)‖g − gn‖Lq(µ) + ‖f − fn‖Lp(µ)‖gn‖Lq(µ).

Of course, the right side goes to zero as n→∞, so self-adjointness holds.
For (A3), for any x ∈ S, write P̃x = Px⊗Px for the product measure on Ω2, and

write Ẽx for its expectation operator. In other words, P̃x is the joint law of two
independent copies of the same process {Xt}t≥0 and {Y }t≥0, which are coupled to
have the same starting point. Then for f ∈ L∞(µ) we have

∫
S

(Ptf(x))2dµ(x) =

∫
S

Ex[f(Xt)]Ex[f(Yt)]dµ(x)

=

∫
S

Ẽx[f(Xt)f(Yt)]dµ(x)

=

∫
S

(f(x))2dµ(x).

To extend this, we use a similar density argument as before. For f ∈ L2(µ), get a
sequence {fn}n∈N in L∞(µ) with fn → f in L2(µ). Then by Cauchy-Schwarz, the
contraction property of Pt, and the fact the unitarity already holds for elements of
L∞(µ), we have
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∣∣∣∣∫
S

(Ptf(x))2dµ(x)−
∫
S

(f(x))2dµ(x)

∣∣∣∣
≤
∫
S

|Ptf(x)Pt(f − fn)(x)|dµ(x) +

∫
S

|Pt(f − fn)(x)Ptfn(x)|dµ(x)

+

∫
S

|(f − fn)(x)fn(x)|dµ(x) +

∫
S

|f(x)(f − fn)(x)|dµ(x)

≤ 2‖f‖L2(µ)‖f − fn‖L2(µ) + 2‖fn‖L2(µ)‖f − fn‖L2(µ).

Since the right side goes to zero as n → ∞, it follows that Pt : L2(µ) → L2(µ) is
unitary, and the result is proved. �

Now return to the general setting that µ is stationary for {Xt}t≥0. It is not hard
to show that the semigroup {Pt}t≥0 is strongly continuous on L2(µ), and we can
take this further by defining the set

D(L) =

{
f ∈ L2(µ) : lim

t→0

1

t
(Ptf − f) exists in L2(µ)

}
,

and the operator L : D(L)→ L2(µ) to be the value of the limit; we say that L is the
L2(µ)-generator of {Xt}t≥0 and that D(L) is its domain. (This setting is slightly
different from the more familiar setting of “Feller processes” in which {Pt}t≥0 is
assumed to be strongly continuous on a suitable space of continuous functions
endowed with the supremum norm.) In this case we have that, for each f ∈ D(L),
the map P·f : [0,∞)→ L2(µ) is strongly differentiable, with ∂tPtf = LPtf = PtLf .
These identities are referred to as the Kolmogorov equations.

The ideas above also give rise to an important bilinear form. For f, g ∈ D(L),
we define the value

E(f, g) = −
∫
Rn

f(x)Lg(x)dµ(x).

We refer to E as the Dirichlet form of {Xt}t≥0.

4. The Ornstein-Uhlenbeck Process

We will derive the Gaussian inequalities of the next section by studying a concrete
stochastic process of interest. We rely somewhat on a background in stochastic
calculus, as outlined in [5].

Fix n ∈ N, and let (Ω,F , {Ft}t≥0,P) be a filtered probability space satisfying
Doob’s “usual conditions” [5, Chapter 1, Definition 4.13] on which a standard n-
dimensional Brownian motion {Bt}t≥0 is defined. On this space, we let the standard
Ornstein-Uhlenbeck (OU) process {Xt}t≥0 be defined via

(1) Xt = X0e
−t +

√
2e−t

∫ t

0

esdBs.

As before, write Px for the probability measure P conditioned on the (possibly
singular) event X0 = x. We can also compute

dXt = −X0e
−tdt−

√
2e−t

∫ t

0

esdBs +
√

2dBt

= −Xtdt+
√

2dBt,
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so it follows by strong uniqueness [5, Chapter IX, Section 1] that the law Px is also

characterized as the law of solution to the SDE dXt = −Xtdt+
√

2dBt with initial
condition X0 = x.

Write Ex and Varx for the expectation and variance with respect to the measure
Px. From (1) we can see that the mean of the OU process is Ex[Xt] = xe−t, and
that its variance, by the Itô isometry, is

Varx(Xt) = E

[(√
2e−t

∫ t

0

esdBs

)2
]

= 2e−2tE

[(∫ t

0

esdBs

)2
]

= 2e−2t
∫ t

0

e2sds = 1− e−2t.

This implies that, for any f ∈ L∞(γn), we have

(2) Ex[f(Xt)] =

∫
Rn

f
(
e−tx+

√
1− e−2tz

)
dγn(z).

where γn denotes the standard n-dimensional Gaussian measure on Rn. In particu-
lar, this implies that γn is a reversible measure for the OU semigroup {Pt}t≥0. So,
by Lemma 3.1, the OU semigroup satisfies the needed assumptions. The formula
(2) also shows that for f ∈ C1

b (Rn) we can differentiate under the inegral to get
∇Ptf = e−tPt∇f , called the commutation identity.

We also note that much can be said about the L2(µ)-generator of the OU process
[1, Section 2.7]. Its domain D(L) consists exactly of functions f ∈ C1(Rd) such
that the distributional Laplacian ∆f is a function g : Rn → R which satisfies
g(x) − x · ∇f(x) ∈ L2(γn); in particular, if f ∈ C2(Rn) is such that |x|∆f(x)
vanishes at infinity, and a ∈ R is arbitrary, then we have f(x) + a ∈ D(L). On this
domain the generator is given exactly by

Lf(x) = ∆f(x)− x · ∇f(x).

A simple application of Gaussian integration by parts shows that for f, g ∈ D(L),
the Dirichlet form can be equivalently written as

E(f, g) =

∫
Rn

∇f(x) · ∇g(x)dγn(x)

In particular, this shows that E is symmetric on D(L). (The collection D(E) of all
functions f ∈ L2(γn) such that − 1

t

∫
Rn(Ptf(x)− f(x))f(x)dγn converges as t→ 0

is called the domain of E , and it is strictly larger than D(L).)

5. Gaussian Concentration Inequalities

In this last part, we use the previous results about the OU semigroup to prove
some concentration results for the Gaussian measure, eventually leading to the
proof of the hypercontractivity of the OU semigroup. For convenience, we set
up a bit of notation. For f ∈ M(Rn), write E[f ] =

∫
Rn fdγ

n and Var(f) =∫
Rn f

2dγn − (
∫
Rn fdγ

n)2 for the expectation and variance on this space, whenever
they are well-defined. Also define
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Ent(f) =

∫
Rn

f log f dγn −
(∫

Rn

fdγn
)

log

(∫
Rn

fdγn
)

called the entropy of f . Note by Jensen’s inequality that we have Ent(f) ≥ 0, and
that Ent(f) <∞ iff

∫
Rn f log f dγn <∞. (The space of measurable functions with

finite entropy with respect to the Gaussian measure forms a Banach space under
a suitable norm. This is an example of a so-called “Orlicz space” but we do not
develop this idea further in the present work.) For concreteness, observe that, if
f ∈ Lp(γn) for some p > 1, then

∫
Rn f log f dγn <∞,

Lemma 5.1 (logarithmic Sobolev inequality). Suppose f : Rn → R is absolutely
continuous, with Var(f) <∞. Then we have

Ent
(
f2
)
≤ 2

∫
Rn

‖∇f(x)‖2dγn(x)

Proof. First consider the case that f ∈ C∞c (Rn). Then define the function v(x) =
(f(x))2, and, for ε > 0, the function vε(x) = v + ε. It is clear that v and vε are
in D(L), and that vε is uniformly bounded away from both zero and infinity. Now
for t ≥ 0, define vt = Ptv and vεt = Ptv

ε = Pt(v + ε) = vt + ε. By using the
boundedness of v and the mean value theorem to apply dominated convergence, it
is easy to differentiate under the inegral and deduce that vt ∈ C∞(Rn), and also
that |x|∆vt(x) vanishes at infinity. Of course, this implies vεt ∈ D(L). Likewise,
we have log(vεt ) ∈ D(L). In particular, the map t 7→ vεt log(vεt ) is strongly differ-
entiable in L2(γn), hence, by passing to a subnet if necessary, we can assume the
convergence occurs Lebesgue almost everywhere. This implies that the derivative
∂t(v

ε
t log(vεt )) exists (as an equivalence class of functions up to Lebesgue almost

everywhere agreement).
Also note that, for any x ∈ Rn, we have vεt (x) →

∫
Rn v

ε(x)dγn(x) as t →
∞. So by the fundamental theorem of calculus, and then by using the dominated
convergence theorem to differentiate under the integral, we have

∫
Rn

vε log(vε)dγn −
(∫

Rn

vεdγn
)

log

(∫
Rn

vεdγn
)

=

∫
Rn

vε0 log(vε0)dγn −
∫
Rn

vε∞ log(vε∞)dγn

= −
∫ ∞
0

∂t

∫
Rn

vεt log(vεt )dγ
ndt

= −
∫ ∞
0

∫
Rn

∂t (vεt log(vεt )) dγ
ndt

= −
∫ ∞
0

∫
Rn

∂tvt (1 + log(vεt )) dγ
ndt

=

∫ ∞
0

E(∂tv
ε
t , 1 + log(vεt ))dt
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Now recall that by the Kolmogorov equation we have ∂tv
ε
t = ∂tPtv

ε = LPtvε = Lvεt ,
and by the alternative formula for the Dirichlet form, we have

E(∂tv
ε
t , 1 + log(vεt )) = E(Lvεt , 1 + log(vεt ))

=

∫
Rn

∇vεt · ∇(1 + log(vεt ))dγ
n

=

∫
Rn

‖∇vεt ‖2

vεt
dγn

By the commutation identity ∇vεt (x) = e−tPt∇vε(x) and Cauchy-Schwarz, we
bound this value as follows:

‖∇vεt (x)‖2

vεt (x)
=

e−2t

vεt (x)
‖Pt∇vε(x)‖2

=
e−2t

vεt (x)
‖Ex[∇vε(Xt)]‖2

=
e−2t

vεt (x)

∥∥∥∥∥Ex
[√

vε(Xt)
∇vε(Xt)√
vε(Xt)

]∥∥∥∥∥
2

≤ e−2t

vεt (x)
Ex[vε(Xt)]Ex

[
‖∇vε(Xt)‖2

vε(Xt)

]
= e−2tPt

(
‖vε‖2

vε

)
(x).

Combining these last results and using the fact that γn is stationary for {Xt}t≥0,
we have shown ∫

Rn

vε log(vε)dγn −
(∫

Rn

vεdγn
)

log

(∫
Rn

vεdγn
)

≤
∫ ∞
0

e−2t
∫
Rn

Pt

(
‖vε‖2

vε

)
dγndt

=

∫ ∞
0

e−2t
∫
Rn

‖vε‖2

vε
dγndt

=
1

2

∫
Rn

‖vε‖2

vε
dγn.

Recalling that vε(x) = (f(x))2 + ε, we have ∇vε(x) = 2f(x)∇f(x), hence∫
Rn

vε log(vε)dγn −
(∫

Rn

vεdγn
)

log

(∫
Rn

vεdγn
)

≤ 2

∫
Rn

f2

f2 + ε
‖∇f‖2dγn.

Now consider taking ε → 0. First notice that we have f2/(f2 + ε) ↑ 1 for all
x ∈ Rn, so monotone convergence applies to the right side above. Then observe
that

∫
Rn v

εdγn = ‖f‖2L2(γn) + ε, so
∫
Rn v

εdγn ↓ ‖f‖2L2(γn). Finally, the map a 7→
a2 log(a2) is uniformly bounded below, so Fatou’s lemma applies to the first term
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on the left side above. Combining this all yields∫
Rn

f2 log(f2)dγn − ‖f‖2L2(γn) log ‖f‖2L2(γn)

≤ lim inf
ε→0

∫
Rn

vε log(vε)dγn − lim
ε→0

(∫
Rn

vεdγn
)

log

(∫
Rn

vεdγn
)

= lim inf
ε→0

(∫
Rn

vε log(vε)dγn −
(∫

Rn

vεdγn
)

log

(∫
Rn

vεdγn
))

≤ lim inf
ε→0

2

∫
Rn

f2

f2 + ε
‖∇f‖2dγn

= 2

∫
Rn

‖∇f‖2dγn.

Finally, we use a standard density argument to extend this to the full result. Let
f : Rn → R be absolutely continuous so that, in particular, the gradient ∇f is
well-defined for Lebesgue almost every x ∈ Rn. If

∫
Rn ‖∇f‖2dγn = ∞, then there

is nothing to prove, so we can assume
∫
Rn ‖∇f‖2dγn < ∞. Combining this with

our assumption Var(f) < ∞ implies that f lies in the Sobolev space H1(γn).
Since C∞c (Rn) is dense in H1(γn), we can get a sequence {fk}k∈N in C∞c (Rn) with
fk → f in H1(γn). This implies fk → f in L2(γn), so, by passing to a subsequence
if necessary, we can also assume fk → f holds Lebesgue almost everywhere. Now
use Fatou’s lemma and the fact that we have already shown the inequality for
{fk}k∈N to get:

Ent(f) =

∫
Rn

f2 log(f2)dγn −
(∫

Rn

f2dγn
)

log

(∫
Rn

f2dγn
)

≤ lim inf
k→∞

∫
Rn

f2k log(f2k )dγn − lim
k→∞

(∫
Rn

f2kdγ
n

)
log

(∫
Rn

f2kdγ
n

)
= lim inf

k→∞

(∫
Rn

f2k log(f2k )dγn −
(∫

Rn

f2kdγ
n

)
log

(∫
Rn

f2kdγ
n

))
= lim inf

k→∞
Ent(fk)

≤ lim inf
k→∞

2

∫
Rn

‖∇fk‖2dγn

= 2

∫
Rn

‖∇f‖2dγn.

This finishes the proof.
�

Theorem 5.2. The Ornstein-Uhlenbeck semigroup is hypercontractive.

Proof. That (1’) is satisfied is implicit. We claim that a strong version of (2’)
holds, that for any 1 < p < q < ∞ and t > T = 1

2 log q−1
p−1 we have ‖Ptf‖Lq(µ) ≤

‖f‖Lp(µ) for all f ∈ Lp(µ). (So, in this case, “hypercontractive” is actually a
quite appropriate term!) To do this, define the monotonic function q(t) = 1 +
(p − 1)e2t and observe that we have q(0) = p and q(T ) = q. Let f ∈ C2

c (Rn)
be arbitrary and assume that f is non-negative. Then set ft = Ptf as well as
r(t) =

∫
Rn(ft(x))q(t)dγn(x).
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Next we claim that we can differentiate r by differentiating under the integral.
By dominated convergence and the mean value theorem, it suffices to show that,
for each s > 0, the derivative ∂t

(
(ft(x))q(t)

)
is bounded above, uniformly for all

(t, x) ∈ [0, s]× Rn. To do this, note that, for any x ∈ Rn, we can compute:

d

dt

(
(ft(x))q(t)

)
= (ft(x))q(t)q′(t) log(ft(x)) + (ft(x))q(t)−1∂tftq(t).

Observe that we have supx∈Rn |ft(x)| ≤ supx∈Rn |f(x)| by Jensen’s inequality. Then
since f ∈ C2

c (Rn) is clearly bounded above uniformly in x ∈ Rn, this implies
that ft(x) is bounded above uniformly in (t, x) ∈ [0,∞) × Rn. Moreover, q is
bounded above uniformly for t ∈ [0, s] by inspection. Therefore, it suffices to
show that ∂tft(x) has the necessary bound. Recall that the heat equation says
∂tft(x) = PtLf(x), so we have supx∈Rn | ddtft(x)| ≤ supx∈Rn |∆f(x) − x · ∇f(x)|
again by Jensen. But f ∈ C2

c (Rn) implies that supx∈Rn |∆f(x)−x ·∇f(x)| is finite,
as needed.

Now we differentiate under the integral and apply the Kolmogorov equation to
compute the derivative of r to be:

r′(t) =

∫
Rn

(
f
q(t)
t q′(t) log(ft) + f

q(t)−1
t ∂tftq(t)

)
dγn

= q′(t)

∫
Rn

f
q(t)
t log(ft)dγ

n + q(t)

∫
Rn

f
q(t)−1
t Lftdγn

=
q′(t)

q(t)

∫
Rn

f
q(t)
t log

(
f
q(t)
t

)
dγn − q(t)(q(t)− 1)

∫
Rn

f
q(t)−2
t ‖∇ft‖2dγn

Now consider the value log ‖ft‖Lq(t)(γn) = 1
q(t) log(r(t)). Differentiating this, and

using the observation that q′(t) = 2(q(t)− 1), yields:

d

dt
log ‖ft‖Lq(t)(γn)

=
r′(t)

q(t)r(t)
− q′(t) log r(t)

(q(t))2

=
q′(t)

(q(t))2r(t)

∫
Rn

f
q(t)
t log

(
f
q(t)
t

)
dγn − q(t)− 1

r(t)

∫
Rn

f
q(t)−2
t ‖∇ft‖2dγn −

q′(t) log r(t)

(q(t))2

=
q′(t)

(q(t))2r(t)

∫
Rn

f
q(t)
t log

(
f
q(t)
t

r(t)

)
dγn − q(t)− 1

r(t)

∫
Rn

f
q(t)−2
t ‖∇ft‖2dγn

=
q′(t)

(q(t))2r(t)

∫
Rn

f
q(t)
t log

(
f
q(t)
t

r(t)

)
dγn − q′(t)

2r(t)

∫
Rn

f
q(t)−2
t ‖∇ft‖2dγn

=
q′(t)

(q(t))2r(t)

(∫
Rn

f
q(t)
t log

(
f
q(t)
t

r(t)

)
dγn − (q(t))2

2

∫
Rn

f
q(t)−2
t ‖∇ft‖2dγn

)
.

Finally, note that the logarithmic Sobolev inequality applied to the function f
q(t)/2
t

shows that the term in parenthesis is non-positive. Therefore, we have shown that
log ‖ft‖Lq(t)(γn) is non-increasing as a function of t, whence the result.

If f ∈ C2
c (Rn) but not necessarily non-negative, then we use Jensen to get
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‖Ptf‖Lq(γn) ≤ ‖Pt|f |‖Lq(γn) ≤ ‖|f |‖Lp(γn) = ‖f‖Lp(γn),

so the result holds.
Now let f ∈ Lp(γn) be arbitrary, and use the density of C2

c (Rn) in Lp(γn) to get
{fn}n∈N in C2

c (Rn) such that fn → f holds in Lp(γn). Then the result for C2
c (Rn)

combined with Fatou’s lemma gives:

‖Ptf‖Lq(γn) ≤ lim inf
n→∞

‖Ptfn‖Lq(γn)

≤ lim inf
n→∞

‖fn‖Lp(γn) = ‖f‖Lp(γn),

as claimed. �

As the proof above shows, the main property of the OU semigroup that was
needed to show hypercontractivity was the logarithmic Sobolev inequality. More
generally, it is know that any semigroup satisfying a logarithmic Sobolev inequality
must be hypercontractive. A remarkable discovery of L. Gross is that the converse
is also true: any hypercontractive semigroup satisfies a certain generalized form of
the logarithmic Sobolev inequality. See [1, Theorem 5.2.3 of Chapter 5.2.2] for a
precise description of this equivalence.

We also note that the logarithmic Sobolev inequality implies the well-known
Gaussian Poincaré inequality [1, Proposition 5.1.3 of Chapter 5.1.2]. (Of course,
there also exist elementary proofs that do not rely on the analysis of semigroups
we have undertaken here.) In general, a logarithmic Sobolev inequality is a much
stronger statement than a Poincaré inequality, as can be intuited from the extra
logarithmic factor present on the left side.

We finally note the remarkable fact that the constant in the logarithmic Sobolev
inequality (and, consequently, in the Gaussian Poincaré inequality) is indepen-
dent of the dimension n. This is key to understanding concentration properties
of infinite-dimensional Gaussian measures, and it has important consequences in
diverse fields as mathematical physics, theoretical computer science, and high-
dimensional statistics.
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