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1. Introduction

In this talk we give a self-contained introduction to large deviations theory,
culminating in a few results about large deviations theorems for a few stochastic
processes of interest.

For some motivation, we note that many probabilistic problems fall into the
following general framework: Let {µn} be a sequence of measures on a space X .
(Often these are the laws of some appropriately-scaled sequence ofX-valued random
variables defined on a common probability space.) Then, for some set A ⊆ X , there
exists a constant c(A) such that we have µn(A) ≈ exp(−nc(A)). Large deviations
theory is essentially the study of determining when such an approximation holds,
and, if it does hold, what is the value of c(A). In other words, it is often said that
large deviations theory is that it is the study of “the exponential rate of decay of
rare events”.

For the sake of concreteness, let’s see some specific basic examples. For one,
suppose that X1, X2, . . . are iid standard normal random variables defined on the
same space, and write Sn = 1

n (X1 + · · · + Xn). Note that Sn is distributed as

N(0, 1
n ), hence for any δ > 0 we have P(|Sn| ≥ δ) = P(Z ≥ δ

√
n), where Z

represents a standard normal random variable. Now recall that we have

(1) exp

(
−x

2

2

)
≤ P(Z ≥ x) ≤ 1

x
exp

(
−x

2

2

)
for all x > 0. Therefore, we have

(2) lim
n→∞

1

n
logP(|Sn| ≥ δ) =

δ2

2
.

This can be interpreted, of course, as the heuristic P(|Sn| ≥ δ) ≈ exp(−n δ
2

2 ). In
this talk we will see a much more general result about empirical averages of iid
random variables.

For a simple example outside the setting of averages, suppose that X1, X2, . . .
are iid from some distribution µ on R, and set Mn = max{X1, . . . Xn}. Note that
for any x ∈ R we have

1
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(3) P(Mn ≤ x) = (µ((−∞, x]))
n

hence

(4) lim
n→∞

1

n
logP(Mn ≤ x) = logµ((−∞, x]).

In this case we get P(Mn ≤ x) = exp(−n logµ((−∞, x])) with exact equality.
As a final example, suppose that Σ is a finite set and that µ is some probability

measure on Σ, which we write as a vector in R|Σ|. Now let X1, X2, . . . be iid
samples from µ and write µXn for their empirical measure 1

n

∑n
i=1 δXi . Take some

probability measure ν on Σ, and note that we have:

(5) P(µXn = ν) ≈ n!

(nν)1! · · · (nν)|Σ|!
µ

(nν)1

1 · · ·µ(nν)|Σ|
|Σ| = n!

|Σ|∏
i=1

µ
(nν)i
i

(nν)i!

(Note that, if the entries of ν are all rational, then the above holds with equality
whenever n is a multiple of the least common denominator of all the entries of ν.)
Now use Stirling’s approximation to get:

1

n
logP(µXn = µYm) =

1

n
log

n!

|Σ|∏
i=1

µ
(nν)i
i

(nν)i!


=

1

n
log(n!) +

1

n

|Σ|∑
i=1

((nν)i log(µi)− log((nν)i!))

∼ log(n) +
1

n

|Σ|∑
i=1

((nν)i log(µi)− (nν)i log((nν)i))

= log(n) +

|Σ|∑
i=1

(νi log(µi)− νi log(νi))− log(n)

=

|Σ|∑
i=1

(νi log(µi)− νi log(νi))

=

|Σ|∑
i=1

νi log

(
µi
νi

)
Notice that this last term is just the relative entropy of ν to µ (also called the
Kullback-Liebler divergence of ν from µ), denoted H(µ|ν). Summarizing the above
we have

(6) lim
n→∞

1

n
logP(µXn = µYm) ≈ H(ν|µ)

which is again an approximation of the sort P(µXn = µYm) ≈ exp(−nH(ν|µ)) that
we described generally.
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2. Basic Theory

In this section we outline some basic definitions and properties of large deviations
theory. In the subsequent sections we’ll prove some powerful results of the forms
described here and above. Throughout, let X denote a Hausdorff topological space.

Definition 2.1. We say that {µε}ε>0 satisfy a large deviation principle (LDP) in
X with rate function I : X → [0,∞] if I is lower semi-continuous and if for all sets
A ∈ B(X ) we have

− inf{I(x) : x ∈ A◦} ≤ lim inf
ε→0

ε logµε(A)

≤ lim sup
ε→0

ε logµε(A) ≤ − inf{I(x) : x ∈ A}.

These are called the LDP lower bound and the LDP upper bound respectively.

The definition of the LDP is a bit dense but it can be made rather intuitive by
interpreting I as describing the “rarity” of each element of X . Then applying the
LDP to some set A for which the upper bound and the lower bound agree is just
the statement that the exponential rate of decay of the probabilites A is determined
by the rarest outcome in A. When the bounds do not agree this intuition is still
rather useful.

Also note that it is possible to consider the limit with respect to a continuous
parameter ε → 0 or with a discrete parameter an → 0 as n → ∞. For the sake
of simplicity, we will not focus on the differences between these different types of
LDPs.

Next we remark that the topology of X should be regarded as a central part of
the LDP. In particular, the interior and closure operations in the definitions are
necessary; there exist plenty of examples which show that the limit need not exist
in general. It is straightforward to prove that {µε}ε>0 satisfies the LDP with rate
function I iff it satisfies the LDP lower bound for all open sets and the LDP upper
bound for all closed sets.

Now we make some remarks about the differing natures of the lower and upper
bounds. First of all, we note that the LDP lower bound is a “local property” in the
following sense: Suppose that {µε}ε>0 and I are such that, for any point x ∈ X
and any open neighborhood U containing x, we have

(7) lim inf
ε→0

ε logµε(U) ≥ −I(x).

Then, it follows that {µε}ε>0 satisfies the LDP with rate function I. In fact, it
suffices to check this property for some basis (or even a subbasis) for the topology
of X , for example the open balls when X is a metric space.

There is also plenty to be said about the nature of the upper bound, but we will
not need to understand such properties for the purposes of the talk today. Instead,
we’ll state and prove an analytical lemma that will be used often when proving the
large deviations upper bound:

Lemma 2.2 (winner-take-all lemma). For any nonnegative families of reals {a1
ε}ε>0, . . .

{aNε }ε>0, we have the identity
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(8) lim sup
ε→0

ε log

(
N∑
i=1

aiε

)
= max

1≤i≤N

{
lim sup
ε→0

ε log aiε

}
.

Proof. Note that for any ε > 0 we have

0 ≤ log

(
N∑
i=1

aiε

)
− max

1≤i≤N

{
log aiε

}
= log

(
N∑
i=1

aiε
max1≤i≤N {log aiε} .

)
≤ logN.

So multiplying by ε taking lim sup as ε→ 0 gives

(9) lim sup
ε→0

ε log

(
N∑
i=1

aiε

)
= lim sup

ε→0
max

1≤i≤N

{
ε log aiε

}
.

Finally, we claim that we have

(10) lim sup
ε→0

max
1≤i≤N

{
ε log aiε

}
= max

1≤i≤N

{
lim sup
ε→0

ε log aiε

}
.

If max1≤i≤N
{

lim supε→0 ε log aiε
}

= A, then there is some j ∈ {1, . . . N} and some

sequence {εk}∞k=1 such that limk→∞ εk log ajεk = A. But max1≤i≤N
{
εk log aiεk

}
≥

εk log ajεk holds for all k, so we have lim supε→0 max1≤i≤N
{
ε log aiε

}
≥ A. Con-

versely, suppose that lim supε→0 max1≤i≤N
{
ε log aiε

}
= B so that there exists

some {εk}∞k=1 with limk→∞max1≤i≤N
{
ε log aiε

}
= B. Then there must exist some

j ∈ {1, . . . N} such that max1≤i≤N
{
ε log aiε

}
= ε log ajε holds for infinitely many k.

In particular, there is a subsequence {kn}∞n=1 satisfying

(11) B = lim
n→∞

{
εkn log ajεkn

}
≤ lim sup

ε→0

{
ε log ajε

}
≤ max

1≤i≤N

{
lim sup
ε→0

ε log aiε

}
.

This proves (10) and finishes the claim. �

Next, we make some remarks about rate functions. A rate function is called
good if its sublevel sets are compact, which in particular implies that inf in the
LDP upper bound is achieved. Under some mild conditions, it can be shown that
there is at most one rate function for which a family of measures {µε}ε>0 can satisfy
an LDP.

Finally, we remark that there is a wide array of tools that can be used tp study
how to “move” a LDP from one space to another. The following is the most basic
and most important example of this:

Lemma 2.3 (Contraction principle). Suppose that X is a Hausdorff topological
space and that {µε}ε>0 on X satisfies the LDP with the good rate function I. If
Y is a Hausdorff topological space and f : X → Y is continuous, then {f∗µε}ε>0

satisfies the LDP with good rate function defined via J(y) = inf{I(x) : f(x) = y}.
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Proof. For the upper bound, we note that f−1(A) is closed whenever A ⊆ Y is
closed, and also that we have

lim sup
ε→0

ε log(f∗µ)(A) = lim sup
ε→0

ε logµ(f−1(A))

≤ inf{I(x) : x ∈ f−1(A)}
= inf{inf{I(x) : f(x) = y} : y ∈ A}
= inf{J(y) : y ∈ A}.

Since f−1(A) is also open whenever A is open, we similarly have:

lim inf
ε→0

ε log(f∗µ)(A) = lim inf
ε→0

ε logµ(f−1(A))

≥ inf{I(x) : x ∈ f−1(A)}
= inf{J(y) : y ∈ A}.

It only remains to show that J is a good rate function. Since f is continuous and
I is good, it suffices to show that for any α ≥ 0 we have:

(12) {y ∈ Y : J(y) ≤ α} = f({x ∈ X : I(x) ≤ α})
If y ∈ f({x ∈ X : I(x) ≤ α}), then of course J(y) ≤ α, so we only need to
prove the converse. If J(y) ≤ α, then there exists some sequence {xn}∞n=1 in
f−1({y}) with I(xn) ↓ α′ ≤ α. Then {xn}∞n=1 eventually lies in f−1({y}) ∩ {x ∈
X : I(x) ≤ α + 1} which is compact, hence there is a subsequence {nk}∞k=1 with
xnk → z ∈ f−1({y})∩{x ∈ X : I(x) ≤ α+ 1}. In other words, we have z ∈ X with
f(z) = y and I(z) ≤ lim infk→∞ I(xnk) = α′ ≤ α since I is lower semi-continuous.
This gives the opposite inclusion and hence proves the claim. �

Be warned that, if I is not good, then J may fail to be lower semi-continuous.

3. LDPs for Averages of Random Variables

In this section we state and prove some of the “classical” results of large devia-
tions theory, which are primarily concerned with averages of random variables.

The simplest setting, which we consider first is the case of sums of iid random
variables in R. We prove this case in full detail, as it provides the main structure
that we will use for more complicated results later.

Theorem 3.1 (Crámer). Let X1, X2, . . . be iid real-valued andom variables on
a common probability space, and assume that we have E[exp(λX1)] < ∞ for all
λ ∈ R. Then the empirical averages Sn = 1

n

∑n
i=1Xi satisfy a large deviation

principle in R with rate function

(13) Λ∗(x) = sup
λ∈R

(λx− Λ(λ)),

where

(14) Λ(λ) = logE[exp(λX1)]

is the logarithmic moment generating function of X1.
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Proof. We separate the proof into three main steps.

Rate Function. Note that Λ(0) = 0, so we have Λ∗(x) ≥ 0 for all x ∈ R.
Moreover, Λ∗ is the pointwise supremum of continuous (in fact, affine) functions,
so it is convex and lower semi-continuous. Next note that, by Jensen’s inequality,
we have Λ(λ) = logE[exp(λX1)] ≥ λE[X1] hence λE[X1]−Λ(λ) ≤ 0 for any λ ∈ R.
Taking the supremum and using nonnegativity gives Λ∗(E[X1]) = 0. Finally, note
that if we have x ≥ E[X1] and λ, then

(15) λx− Λ(λ) ≤ λE[X1]− Λ(λ) = 0

hence the supremum can be taken over λ ≥ 0. Since each function λx − Λ(λ) is
non-decreasing for λ ≥ 0, this implies that Λ∗ is non-decreasing on (E[X1],∞).
Similarly, we can show that Λ∗ is non-increasing on (−∞,E[X1]). Now we proceed
to the main proof.

Upper Bound. First we make a Chernoff-type bound. For any x ≥ E[X1] and
any λ ≥ 0, we have

P(Sn ≥ x) = P

(
n∑
i=1

Xi ≥ nx

)

= P

(
exp

(
λ

n∑
i=1

Xi

)
≤ exp(nλx)

)

≤ exp(−nλx)E

[
exp

(
λ

n∑
i=1

Xi

)]
= exp(−nλx) (E [exp (λX1)])

n

= exp(−nλx+ nΛ(λ))

Now optimize this over all λ ≥ 0 and we get P(Sn ≥ x) ≤ exp(−nΛ∗(x)). A similar
argument shows that for x ≤ E[X1] we have P(Sn ≤ x) ≤ exp(−nΛ∗(x)).

Now let F ⊆ R be any closed set. If F = ∅, then there is nothing to prove, so
suppose F is non-empty. Write IF = inf{I(x) : x ∈ F}. If IF = 0, then there
is nothing to prove, so suppose IF > 0. Then E[X1] /∈ F , so we can let (x+, x−)
be the union of all open intervals (a, b) satisfying E[X1] ∈ (a, b) ⊆ R \ F . Since
F is nonempty, at least one of x+ or x− must be finite. If x+ is finite then we
have x+ ∈ F , hence Λ∗(x+) ≥ IF . Then use the Chernoff bound above to get
P(Sn ≥ x+) ≤ exp(−nΛ∗(x+)) ≤ exp(−nIF ). On the other hand, if x− is finite
then we have x− ∈ F and this implies P(Sn ≤ x−) ≤ exp(−nΛ∗(x−)) ≤ exp(−nIF ).
Combining these, we have

(16) P(Sn ∈ F ) ≤ P(Sn ≤ x−) + P(Sn ≥ x+) ≤ 2 exp(−nIF ),

and this is the desired upper bound.

Lower Bound. Take any x ∈ R. Note that if we define the random variables
Y1, Y2, . . . via Yi = Xi−x, then we have ΛY (λ) = logE[exp(λY1)] = logE[exp(λX1)]−
λx = Λ(λ) − λx hence Λ′(λ) = Λ′Y (λ) + x. Since ΛY is smooth and convex hence
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attains a minimum, there must exist some η ∈ R such that Λ′Y (η) = 0 and hence
that Λ′(η) = x. Now let µ̃ denote the probability measure on R which has Radon-
Nikodym derivative

(17)
dµ̃

dµ
(t) = exp(ηt− Λ(η))

Note that a random variable Z1 distributed according to µ̃ has E[Z1] = Λ′(η) = x.
Now keep x as above and take any δ > 0. Note that we have:

P(Sn ∈ (x− δ, x+ δ)) =

∫
{|Sn−x|<δ}

dµ⊗n(t1, . . . tn)

≥ exp(−nη(x+ δ))

∫
{|Sn−x|<δ}

exp

(
η

n∑
i=1

ti

)
dµ⊗n(t1, . . . tn)

= exp(−nη(x+ δ) + nΛ(η))

∫
{|Sn−x|<δ}

exp

(
η

n∑
i=1

ti − nΛ(η)

)
dµ⊗n(t1, . . . tn)

= exp(−nη(x+ δ) + nΛ(η))

∫
{|Sn−x|<δ}

dµ̃⊗n(t1, . . . tn)

Note that the integral term is just the probability that the empirical mean of iid
samples from µ̃ lies within distance δ of x. By the weak law of large numbers,
we know that this probability goes to one as n goes to infinity. Now we can take
normalized logarithmic limits to get:

lim inf
n→∞

1

n
logP(Sn ∈ (x− δ, x+ δ))

≥ −η(x+ δ) + Λ(η) + lim inf
n→∞

1

n
log

(∫
{|Sn−x|<δ}

dµ̃⊗n(t1, . . . tn)

)
= −η(x+ δ) + Λ(η)

= − (ηx− Λ(η))− ηδ
≥ −Λ∗(x)− ηδ

Now suppose that 0 < δ′ < δ. The argument above shows

lim inf
n→∞

1

n
logP(Sn ∈ (x− δ, x+ δ))

≥ lim inf
n→∞

1

n
logP(Sn ∈ (x− δ′, x+ δ′))

≥ −Λ∗(x)− ηδ′

so taking δ′ → 0 gives

(18) lim inf
n→∞

1

n
logP(Sn ∈ (x− δ, x+ δ)) ≥ −Λ∗(x)

As we have seen, this inequality is sufficient for establishing the lower bound, so
the theorem is proved. �
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The exponential moment constraint can be significantly relaxed, but, for the
sake of simplicity, we do not study the general case here. We also remark that the
same theorem holds in Rd with some easy modifications to the statement and some
significant modifications to the proof. (Primarily, the proof of the upper bound is
more complicated since it does not make sense for Λ∗ to be “monotonic on either
side of E[X1] in higher dimensions.)

Theorem 3.2 (Crámer). Let X1, X2, . . . be iid Rd-valued random variables on a
common probability space, and assume that we have E[exp(〈λ,X1〉)] < ∞ for all
λ ∈ Rd. Then the empirical averages Sn = 1

n

∑n
i=1Xi satisfy a large deviation

principle in Rd with rate function

(19) Λ∗(x) = sup
λ∈R

(〈λ, x〉 − Λ(λ)),

where

(20) Λ(λ) = logE[exp(〈λ,X1〉)]

is the logarithmic moment generating function of X1.

We also note that the proofs above only rely on the independence of the variables
insofar as the existence of the limit limn→∞

1
n logE[exp(λSn)] is concerned. For this

reason, it is natural to guess that it is possible to extend the result to a large class
of “weakly dependent” random variables. The Gärtner-Ellis theorem makes this
precise, but, for the sake of brevity we do not describe this result in detail.

Next we show another classical result, which proves the existence of a large
deviations principle for the empirical measure of iid random variables defined on a
finite state space.

Theorem 3.3 (Sanov). Let Σ be a set with |Σ| = d and let M1(Σ) denote
the collection of all probability measures on Σ. Fix µ ∈ M1(Σ) and and let
µn denote the empirical measure of n iid samples from µ. Then, the laws of
{µn}∞n=1 satisfy a large deviations principle in M1(Σ) with the good rate func-

tion H(ν|µ) =
∑d
i=1 νi log(µi/νi).

Proof. Without loss of generality we may write the elements of Σ as {1, . . . d}, and
we can view M1(Σ) as a convex subset of Rd, usually called the d-simplex. Note
that, under this perspective, the empirical measure µn is just the average of iid
Rd-valued random variables X1, X2, . . . whose common distribution µ̃ is such that
µ̃({ei}) = µ({i}) holds for all i. For simplicity, write µ({i}) = µi and similarly for
other probability measures on Σ.

By Crámer’s theorem in Rd, we know that the laws of {µn}∞n=1 satisfy a LDP in
Rd with rate function Λ∗. Since µn ∈ M1(Σ) holds almost surely, it follows that
the laws of {µn}∞n=1 satisfy a LDP inM1(Σ) with rate function Λ∗. Next we show
that we have Λ∗(ν) = H(ν|µ) for all ν ∈M1(Σ).

First, note that by Jensen’s inequality we have
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Λ(λ) = log

(
d∑
i=1

eλiµi

)
= log

(
d∑
i=1

eλi
µi
νi
νi

)

≥
d∑
i=1

(
λi + log

(
µi
νi

))
νi = 〈λ, ν〉 −H(ν|µ),

hence

(21) Λ∗(ν) = sup
λ∈R

(〈λ, ν〉 − Λ(λ)) ≤ H(ν|µ).

For the opposite inequality, first consider the case that ν is not absolutely con-
tinuous with respect to µ and hence that H(ν|µ) = ∞. That is, there exists some
j ∈ Σ with µj = 0 and νj > 0. Now for c > 0 define λ ∈ Rd via λj = c and λi = 0
for all i 6= j. It follows that we have

(22) 〈λ, ν〉 − Λ(λ) = cνj − log

∑
i 6=j

µi

 = cνj .

Taking c → ∞ shows that we have Λ∗(ν) = ∞, so Λ∗(ν) ≥ H(ν|µ) holds. Other-
wise the fraction νi/µi is well-defined for all i, and we can define λi = log(νi/µi).
Plugging this into the above gives

(23) Λ∗(ν) ≥ 〈λ, ν〉 − Λ(λ) = H(ν|µ),

so Λ∗(ν) ≥ H(ν|µ) holds. We have hence proven Λ∗(ν) = H(ν|µ), with ∞ being a
possible value.

It only remains to show that H(ν|µ) is good. Since M1(Σ) is compact, we only
need to show that {ν ∈ M1(Σ) : H(ν|µ) ≤ α} is closed for any α ≥ 0. Indeed, if
{ν(n)}∞n=1 lie in this set and satisfy ν(n) → ν ∈M1(Σ), then we have

(24) H(ν|µ) =

d∑
i=1

νi log

(
µi
νi

)
= lim
n→∞

d∑
i=1

νni log

(
µi
νni

)
≤ α,

and the result follows. �

As suggested by the notation, Sanov’s theorem holds much mroe generally. In
fact, whenever Σ is a Polish space and M1(Σ) is given the topology of weak con-
vergence, then the same statement holds. However, the proof is significantly more
involved, with many more topological and measure-theoretic considerations.

Also, note that we derived Sanov’s theorem as a consequence of Crámer’s theo-
rem in Rd. However, our heuristic calculations at the beginning of the talk showed
that we could roughly justify the same conclusion with more combinatorial meth-
ods. It is not hard to show that one can prove the Sanov’s theorem rigorously via
combinatorial methods, without first proving Crámer’s theorem.
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4. LDPs for Stochastic Processes

In this section we develop a few large deviations result about continuous-time
stochastic processes of interest. The theorems of the previous section serve as a
good template for the work here, and we will follow essentially the arguments even
in this more complicated case.

Throughout this section, let {Bt}t≥0 denote a Brownian motion on some prob-
ability space (Ω,F ,P), and let T > 0 denote some fixed (deterministic) time. Let
C([0, T ];R) denote the space of continuous functions from [0, T ] to R, and let
C0([0, T ];R) ⊆ C([0, T ];R) denote the subspace of functions with value zero at
time zero.

Also recall that a function f : [0, T ] → R is called absolutely continuous if
for any ε > 0 there exists some δ > 0 such that any disjoint open intervals
{(ak, bk)}∞k=1 with

∑∞
k=1(bk − ak) < δ satisfy

∑∞
k=1 |f(bk) − f(ak))| < ε. An

absolutely continuous function f has a well-defined derivative Lebesgue-almost-
everywhere, which we denote f ′. We write H1([0, T ];R) ⊆ C0([0, T ];R) for the set
of functions f ∈ C0([0, T ];R) which are absolutely continuous and which satisfy∫ T

0
|f ′(t)|2dt <∞.

Theorem 4.1 (Schilder). The laws of {
√
εBt}ε>0 satisfy a large deviation principle

in C0([0, T ];R) with good rate function

(25) I(φ) =

{
1
2

∫ T
0
|φ′(t)|2dt if φ ∈ H1

∞ else
.

Proof. As before, we provide the proof in three main steps.

Rate Function. First let us prove that I is a good rate function, i.e. that for any
α ≥ 0 the set Kα = {φ ∈ C0([0, T ];R) : I(φ) ≤ α} is compact in C0([0, T ];R). This
will rely heavily on some functional analysis: Note first that for any φ ∈ Kα, we
have, by the fundamental theorem of calculus and Cauchy-Schwarz:

sup
t∈[0,T ]

|φ(t)| ≤ sup
t∈[0,T ]

∫ t

0

|φ′(s)|ds

≤ sup
t∈[0,T ]

(∫ t

0

1ds

) 1
2
(∫ t

0

|φ′(s)|2ds
) 1

2

≤ sup
t∈[0,T ]

√
αt =

√
2αT ,

hence Kα is uniformly bounded. A similar argument shows that, for any t1, t2 ∈
[0, T ] with t1 < t2 and any φ ∈ Kα, we have:

|φ(t1)− φ(t2)| ≤
∫ t2

t1

|φ′(s)|ds

≤
(∫ t2

t1

1ds

) 1
2
(∫ t2

t1

|φ′(s)|2ds
) 1

2

≤
√

2α(t2 − t1).

This proves that we have |φ(t1) − φ(t2)| ≤
√

2α|t1 − t2| for all φ ∈ K and all
t1, t2 ∈ [0, T ], i.e. that Kα is uniformly Hölder continuous with modulus 1/2. In
particular this shows that Kα is uniformly equicontinuous. So, by the Arzela-Ascoli
theorem, it follows that Kα is pre-compact in C0([0, T ];R).
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Note also that H1 can be made into a Hilbert space with the inner product

〈φ1, φ2〉H1
=
∫ T

0
φ′1(t)φ′2(t)dt, and then it follows that I(φ) = ||φ||2H1

. We can write

Kα = {φ ∈ H1 : ||φ||H1
≤
√
α}, and, by the Banach-Alaoglu theorem, this set is

weakly-compact.
Therefore, any sequence {φn}∞n=1 in Kα admits a single subsequence {φnk}∞k=1

which converges to φ ∈ C0([0, T ];R) in C0([0, T ];R) and which converges to φ̃ ∈ Kα

weakly in H1. For each t ∈ [0, T ] define ψ ∈ H1 via ψ(s) = s for s ∈ [0, t] and

ψ(s) = t for s ∈ [t, T ]. Then we have that 〈φ, ψ〉H1
=
∫ t

0
φ′(s)ds = φ(t), so the

point evaluations are continuous with respect to the weak topology on H1. Of
course, the point evaluations are also continuous with respect to C0([0, T ];R). This

means φnk(t) converges to both φ(t) and φ̃(t) for each t ∈ [0, T ], hence φ = φ̃. We
have shown that any sequence in Kα contains a subsequence which converges in
C0([0, T ];R) to an element of Kα, hence that Kα is compact in the topology of
C0([0, T ];R). This shows that I is a good rate function.

Upper Bound. Write ρ : C([0, T ];R)2 → [0,∞) for ρ(f, g) = supt∈[0,T ] |f(t)−g(t)|
and for a compact set K ⊆ C([0, T ];R) write ρ(f,K) = infg∈K ρ(f, g). Now for

arbitrary N , write B̂N for the piecewise-linear process which is equal to B for
t = jT/N for integers j. Note that we have

(26)
{
ρ(
√
εB,Kα) ≥ δ

}
⊆
{
I(
√
εB̂N ) > α

}
∪
{
ρ(
√
εB,
√
εB̂N ) ≥ δ

}
,

so the union bound and the winner-take-all lemma imply that we have

lim sup
ε→0

ε logP(ρ(
√
εB,Kα) ≥ δ)

≤ max

{
lim sup
ε→0

ε logP(I(
√
εB̂N ) > α),

lim sup
ε→0

ε logP(ρ(
√
εB,
√
εB̂N ) ≥ δ)

}
.

For the first term in the maximum, note that the derivative of B̂N is defined at all
points in [0, T ] except those of the form jT/N . Moreover, the derivative between
these values is just the slope of the secant line which is equal to the size of the
increment time N/T . As the increments are Gaussian with variance T/N , we have

(27) I(B̂N )
d
=
ε

2

N∑
i=1

W 2
i

where W1,W2, . . . are iid standard Gaussians. By Chernoff’s bound and the mo-
ment generating function for chi-squared random variable, we have, for any θ ∈
(0, 1

2 ):
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P(I(
√
εB̂N ) > α) = P

(
ε

2

N∑
i=1

W 2
i > α

)

≤ exp

(
−2αθ

ε

)
exp

(
−N

2
log(1− 2θ)

)
.

This shows that we have, lim supε→0 ε logP(I(
√
εB̂N ) > α) ≤ −2αθ, so, taking

θ ↑ 1
2 gives lim supε→0 ε logP(I(

√
εB̂N ) > α) ≤ −α.

For the second term in the maximum, make the bound:

P(ρ(
√
εB,
√
εB̂N ) ≥ δ) = P

(
sup
t∈[0,T ]

|Bt − B̂Nt | ≥
δ√
ε

)

= NP

(
sup

t∈[0, TN )

|Bt − B̂Nt | ≥
δ√
ε

)

= NP

(
sup

t∈[0, TN )

∣∣∣∣Bt − t

T/N
B T
N

∣∣∣∣ ≥ δ√
ε

)

= NP

(
sup

t∈[0, TN )

|Bt| ≥
δ

2
√
ε

)

= 4NP
(
B T
N
≥ δ

2
√
ε

)
≤ 4N

3
2

√
2πT

exp

(
−Nδ

2

4εT

)
.

Now we see that the normalized logarithmic limit is

lim sup
ε→0

ε logP(ρ(
√
εB,
√
εB̂N ) ≥ δ)

≤ lim sup
ε→0

ε log

(
4N

3
2

√
2πT

)
− Nδ2

4T
≤ −Nδ

2

4T
.

Combining these bounds, we have shown:

(28) lim sup
ε→0

ε logP(ρ(
√
εB,Kα) ≥ δ) ≤ max

{
−α,−Nδ

2

4T

}
→ −α

where the limit sends N →∞.
Now we use this to prove the large deviations upper bound. For any closed

set F ⊆ C0([0, T ];R), write IF = inf{I(φ) : φ ∈ F}. If IF = 0, then there is
nothing to prove, so assume IF > 0. For γ ∈ (0, IF ), the set KIF−γ is compact.
Moreover, KIF−γ is disjoint from F . Therefore, there exists some δ > 0 such that
ρ(φ,KIF−γ) ≥ δ holds for all φ ∈ F . Putting this all together, we have

lim sup
ε→0

ε logP(
√
εB ∈ F )

≤ lim sup
ε→0

ε logP(ρ(
√
εB,KIF−γ) ≥ δ) ≤ −IF + γ

Now take γ ↓ 0 to get
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(29) lim sup
ε→0

ε logP(
√
εB ∈ F ) ≤ −IF

which is the desired upper bound.

Lower Bound. Take an arbitrary point φ ∈ C0([0, T ];R) and any δ > 0. Note
that by Girsanov’s theorem we have:

P(
√
εB ∈ Bδ(φ))

= P
(
B − 1√

ε
φ ∈ B δ√

ε
(0)

)
= E

[
exp

(
− 1√

ε

∫ T

0

φ′(t)dBt −
1

2ε

∫ T

0

|φ′(t)|2dt

)
;B ∈ B δ√

ε
(0)

]

= exp

(
−1

ε
I(φ)

)
E

[
exp

(
− 1√

ε

∫ T

0

φ′(t)dBt

)
;B ∈ B δ√

ε
(0)

]
.

Now note that we have P(B ∈ Bδε−1/2(0)) → 1 as ε → 0, hence there exists some
sufficiently small ε > 0 which gives P(B ∈ Bδε−1/2(0)) ≥ 3

4 . Likewise, we have by
Chebeshev’s inequality:

P

(
exp

(
− 1√

ε

∫ T

0

φ′(t)dBt

)
≥ exp

(
−2

√
2I(φ)

ε

))

= 1− P

(∫ T

0

φ′(t)dBt ≥ 2
√

2I(φ)

)

≥ 1−
E
[(∫ T

0
φ′(t)dBt

)2
]

8I(φ)
= 1− 1

4
=

3

4

Therefore, the intersection of these two sets is nonempty and has probability at
least 1

2 . Combining this with the above, this implies

(30) P(
√
εB ∈ Bδ(φ)) ≥ 1

2
exp

(
−1

ε
I(φ)

)
exp

(
−2

√
2I(φ)

ε

)
.

Finally, this gives

(31) lim inf
ε→0

ε logP(
√
εB ∈ Bδ(φ)) ≥ I(φ),

which we have seen is sufficient for establishing the lower bound. �

The general methods we used to prove Crámer’s theorem and Schilder’s theorem
are standard in the theory of large deviations: The upper bound is proved via
concentration of measure, and the lower bound is proved by applying a suitable
change of measure that makes a certain uncommon event into a common event.
However, the actual details needed to carry out these steps are quite different.
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Next we remark Schilder’s theorem can be easily extended to a small class of
diffusions. In the following result, the limit is taken as the scale of the noise goes to
zero, so these results are extremely useful in practical engineering situations where
one is interested in fine properties of dynamical systems in the small noise regime.

Theorem 4.2 (Freidlin-Wentzell). Let µ : R → R be a Lipschitz function, and,
for ε > 0, write {Xε

t }t∈[0,T ] for the solution to the SDE dXt = µ(Xt)dt +
√
εdBt

with X0 = 0. Then, the laws of {Xε
t }t∈[0,T ] satisfy a large deviations principle in

C0([0, T ];R) with good rate function

(32) Iµ(φ) =

{
1
2

∫ T
0
|φ′(t)− µ(φ(t))|2dt if φ ∈ H1

∞ else
.

Proof. Let F : C0([0, T ];R) → C0([0, T ];R) be the function such that F (φ) = x
whenever x is a solution to the integral equation

(33) x(t) =

∫ t

0

µ(x(s))ds+ φ(t)

for all t ∈ [0, T ].
To see that F is continuous, note that for any φ1, φ2 ∈ C0([0, T ];R) we have that

x1 = F (φ1) and x2 = F (φ2) satisfy

|x1(t)− x2(t)| =
∣∣∣∣∫ t

0

(µ(x1(s))− µ(x2(s))) ds+ (φ1(t)− φ2(t))

∣∣∣∣
≤
∫ t

0

|µ(x1(s))− µ(x2(s))| ds+ |φ1(t)− φ2(t)|

≤ K
∫ t

0

|x1(s)− x2(s)| ds+ |φ1(t)− φ2(t)|

for all t ∈ [0, T ], and where K is the Lipschitz constant of µ. Taking suprema gives

(34) sup
s∈[0,t]

|x1(s)−x2(s)| ≤ K
∫ t

0

sup
u∈[0,s]

|x1(u)− x2(u)| ds+ sup
s∈[0,t]

|φ1(s)− φ2(s)| .

Now apply Gronwall’s inequality to get

(35) sup
t∈[0,T ]

|x1(t)− x2(t)| ≤ sup
t∈[0,T ]

|φ1(t)− φ2(t)| eKT ,

which implies that F is continuous (in fact, Lipschitz continuous with Lipschitz
constant 1).

Now we note that the law of {Xε
t }t∈[0,T ] is just the pushforward of the law

of {
√
εBt}t∈[0,T ] by F . Hence, the contraction principle implies that the laws of

{Xε
t }t∈[0,T ] satisfy a large deviations principle with good rate function given by

J(x) = inf{I(φ) : x = F (φ)}. To finish the proof, we only need to show J = Iµ.
To do this, first note that F is a bijection of C0([0, T ];R): It is surjective since for

any x ∈ C0([0, T ];R) we can set φ ∈ C0([0, T ];R) via φ(t) = x(t) −
∫ T

0
µ(x(s))ds



LARGE DEVIATIONS OF STOCHASTIC PROCESSES 15

and we have F (φ) = x, and it is injective since F (φ1) = F (φ2) = x imply φ1(t) =

x(t) −
∫ T

0
µ(x(s))ds = φ2(t). Moreover, is can be shown that, when F (φ) = x, we

have x ∈ H1 iff φ ∈ H1. Putting this all together gives that x = F (φ) gives

(36) J(x) =
1

2

∫ T

0

|φ′(t)|2ds =
1

2

∫ T

0

|x′(t)− µ(x(t))|2ds

when x ∈ H1 and J(x) =∞ otherwise. �

The result about can also be generalized to the laws of solutions of an SDE whose
drift term depends on Xt. However, the same method of proof does not apply since
there is no continuous mapping analogous to F . (Essentially, this is because the
Ito integral is not defined pathwise.) We omit the proof of this result, but, for the
sake of completeness, we state it now:

Theorem 4.3 (Freidlin-Wentzell). Let µ, σ : R → R be Lipschitz functions with
σ > 0 everywhere, and, for ε > 0, write {Xε

t }t∈[0,T ] for the solution to the SDE

dXt = µ(Xt)dt +
√
εσ(Xt)dBt with X0 = 0. Then, the laws of {Xε

t }t∈[0,T ] satisfy
a large deviations principle in C0([0, T ];R) with good rate function

(37) Iµ,σ(φ) =
1

2

∫ T

0

|φ′(t)− µ(φ(t))|2

σ2(φ(t))
dt.

The theorems of this section all have counterparts in Rd with some modifications.
In general, the statements of such results are easy to intuit, but the proofs are
sometimes much more difficult to establish.
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