
LOCAL TIMES OF CONTINUOUS SEMIMARTINGALES

Contents

1. Introduction 1
1.1. Motivation 1
1.2. Preliminaries Convex Functions 2
2. General Local Times 4
2.1. As a Temporal Process 4
2.2. As a Spatial Process 7
2.3. As a Space-Time Process 9
3. Brownian Local Times 10
4. Tanaka’s SDE 12

1. Introduction

1.1. Motivation. How much time does a stochastic process spend in a given state?
If the state space is discrete, then this quantity is easy to define and compute.
However, when the state space is continuous (say, all of R), then it is not clear how
to even define such an object. The theory of local times is a way to make this idea
precise for continuous semimartingales.

Heuristically, the local time of a continuous one-dimensional semimartingale X =
{Xt}t≥0 around a point a is the “amount of time” X spends at a. One candidate
for this value is the random measure

(1)

∫ t

0

δ(Xs − a)d〈X,X〉s,

if a Lebesgue-Stieljes integral over measure measures can be made meaningful.
Perhaps another candidate is the limit

(2) lim
ε→0

1

2ε

∫ t

0

1{Xs∈(a−ε,a+ε)}d〈X,X〉s,

if it can be shown to exist in some suitable sense. As we develop the theory of local
times in these notes, we will see that both of these intuitions can be made precise.

Note in particular that in the above we are always integrating with d〈X,X〉s
instead of with ds. An explanation for this quirk is that the increasing process
{〈X,X〉t}t≥0 is in some sense the “natural time-scale” for the process X. Of course,
for Brownian motion this reduces to the usual time-scale.

We will first explore the general theory of local times of continuous semimartin-
gales, then we will focus on the particular case of local times of Brownian motion
in which the abstract theory can be made very concrete. Then we’ll see a classical
application of local times to SDEs.
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2 LOCAL TIMES OF CONTINUOUS SEMIMARTINGALES

1.2. Preliminaries Convex Functions. In this subsection we’ll review some im-
portant results about convex functions on the real line. These are important since,
as we will later see, the theory of local times can be in part viewed as the study of
relaxing Ito’s lemma from C2 functions to convex functions.

Let f : R → R be any convex function. If f is convex and twice-differentiable,
then we know from basic calculus that its derivative f ′ is non-decreasing and that its
second derivative f ′′ is non-negative. Our first goal is to establish a generalization
of these properties when f is convex but no further assumptions are placed on it.

The definition of convexity is that, for any a, b ∈ R and t ∈ [0, 1] we have
f(ta+(1− t)b) ≤ tf(a)+(1− t)f(b). Now take any y1 ≤ y2 < x in R and apply the
definition of convexity with a = y1, b = x, and t = (x− y2)/(x− y1), which gives

(3) f(y2) ≤ x− y2
x− y1

f(y1) +
(x− y1)− (x− y2)

x− y1
f(x),

and rearranging this yields

(4)
f(x)− f(y1)

x− y1
≤ f(x)− f(y2)

x− y2
.

This shows that, for fixed x, the difference quotient of f near x is non-decreasing
as y ↑ x. In particular, the left-hand derivative of f is well-defined at every point
in R, and we denote this function by f ′−. A similar calculation shows that a similar
bound is true for points to the right of x, and hence that the right-hand derivative
f ′+ is also well-defined at every point. Combining both bounds shows that f is
locally Lipschitz and hence locally bounded.

Next we’ll show that the function f ′− is left-continuous. Suppose y ↑ x and h ↓ 0.
Now use the fact that convex functions are continuous, the fact that non-decreasing
limits can be interchanged, and the definition of f ′− to check:

lim
h↓0

f ′−(x− h) = lim
h↓0

lim
y↑x

f(x− h)− f(y − h)

x− y

= lim
y↑x

lim
h↓0

f(x− h)− f(y − h)

x− y

= lim
y↑x

f(x)− f(y)

x− y
= f ′−(x)

as claimed. Another easy calculation shows that f ′− is non-decreasing.
Next we consider the “second derivative” of f . Of course, this does not exist

in the usual sense, but it may be possible to define a weak derivative in the sense
of distributions. To do this we need to check that f is locally integrable, and this
follows from the fact that it is locally bounded as we showed in (3). Now recall that
the weak second derivative of f is the distribution sending φ 7→

∫
R φ
′′(x)f(x)dx for

φ ∈ C∞c (R); we denote this by f ′′ and we write 〈f ′′, φ〉 =
∫
R φ
′′(x)f(x)dx.

Let us understand what object the second derivative is. For any test function
φ ∈ C∞c (R), we have by definition:
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(5) 〈f ′′, φ〉 =

∫
R
φ′′(x)f(x)dx =

∫
R

lim
h↓0

(
φ′(x+ h)− φ′(x)

h

)
f(x)dx.

Now note that the limit converges for any x ∈ R. Moreover, the difference quotient
is zero outside of some compact set containing supp(φ). So we can interchange
the limit and integral by dominated convergence. Then change variables and use
dominated convergence again to get:

〈f ′′, φ〉 =

∫
R

lim
h↓0

(
φ′(x+ h)− φ′(x)

h

)
f(x)dx

= lim
h↓0

1

h

(∫
R
φ′(x+ h)f(x)dx−

∫
R
φ′(x)f(x)dx

)
= lim

h↓0

1

h

(∫
R
φ′(x)f(x− h)dx−

∫
R
φ′(x)f(x)dx

)
=

∫
R
φ′(x) lim

h↓0

(
f(x− h)− f(x)

h

)
dx

= −
∫
R
φ′(x)f ′−(x)dx

Note that the integral on the right is just the Lebesgue-Stieljes integral of f ′−
against the integrator φ′′, which has bounded variation since φ′′′ is continuous and
compactly supported. So, applying integration by parts yields

(6) 〈f ′′, φ〉 =

∫
R
φ′′(x)df ′−(x)

Since f ′− is a non-decreasing function, the Lebesgue-Stieljes integral coincides with
the Lebesgue integral with respect to a (non-negative) Radon measure. Intuitively,
this could be written as df ′−(x) but for notation’s sake we will instead write this as
f ′′(dx). The fact that the distributional second derivative of a convex function f
is a non-negative Radon-measure can be seen as a generalization of the fact that
second derivatives of convex functions are non-negative.

Moving on, we present a useful decomposition of convex functions that will be
important later. Suppose that I ⊆ R is some compact interval and that f : I →∞
is convex. We claim that there exists a unique pair of reals α, β depending on f
and I such that

(7) f(x) = αx+ β +
1

2

∫
I

|x− a|f ′′(da)

holds for all x ∈ I. If I consists of a single point then this is obvious. If I has at
least two points x1, x2, then the coefficients α, β must satisfy the linear system

(8)

(
f(x1)− 1

2

∫
I
|x1 − a|f ′′(da)

f(x2)− 1
2

∫
I
|x2 − a|f ′′(da)

)
=

(
x1 1
x2 1

)(
α
β

)
which admits a unique solution. Next note that this decomposition is related to
the left-hand derivative via the identity:
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(9) f ′−(x) =
1

2

∫
I

sign(x− a)f ′′(da) + α

for all x in the interior of I, where sign is defined to be 1 on (0,∞) and −1 on
(−∞, 0]. To see this, note that the measure f ′′(da) is finite on the compact interval
I, and that the difference quotients are uniformly bounded on I. So, dominated
convergence and the fact that the left-hand derivative of x 7→ |x− a| is sign(x− a)
gives:

f ′−(x) = lim
y↑x

f(x)− f(y)

x− y

= lim
y↑x

1

x− y

∫
I

(|x− a| − |y − a|)f ′′(da)

=

∫
I

lim
y↑x

|x− a| − |y − a|
x− y

f ′′(da) =
1

2

∫
I

sign(x− a)f ′′(da),

which will be a useful identity later.
In the above we have collected useful facts about convex functions in complete

generality, and we have seen that many properties of non-smooth convex functions
can be understood in analogy with smooth convex functions. However, sometimes
this framework is still not enough, and we will instead need to applying a “smooth-
ing” operation to some non-smooth convex functions.

Let j : R → R denote a compactly-supported C∞ function with supp(j) ⊆
(−∞, 0] and

∫ 0

−∞ j(y)dy = 1, and define jn via jn(y) = nj(ny). We can think

of {jn} as a sequence of smooth functions which “approximate the dirac delta”
in the sense of distributions. Now if f is any convex function, define fn(x) =∫ 0

−∞ f(x + y)jn(y)dy. Some important facts that we will (but will not prove, for

brevity’s sake) is that each fn is a C∞ function, that fn converges to f pointwise,
and that f ′n converges upwards to f ′−.

2. General Local Times

In this section we construct the local time of a continuous semimartingale in a
rigorous way and explore many of its general properties. Throughout this section let
X = {Xt}t≥0 be a continuous semimartingale on a probability space (Ω,F ,P) which
is adapted to a filtration {Ft}t≥0 satisfying the usual completeness conditions. We
will usually leave the probability space and filtration “in the background” and we
won’t reference them unless it’s necessary.

2.1. As a Temporal Process. Our first step is to rigorously construct the local
time of a continuous semimartingale. This will entail first taking the perspective
that some point a ∈ R is fixed and that we wish to study how the process {Xt}t≥0
accumulates near a as time varies.

Theorem 2.1 (Tanaka’s Formula). For each a ∈ R, there exists a continuous,
non-decreasing, adapted process Lat , called the local time of X at a, such that

(10) |Xt − a| = |X0 − a|+
∫ t

0

sign(Xs − a)dXs + Lat
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holds almost surely. In particular, |Xt − a| is a semimartingale.

Proof. We first prove a slightly more general statement. If f : R→ R is any convex

function, we claim that there exists a continuous, non-decreasing process {Aft }t≥0
such that

(11) f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs +
1

2
Aft

holds almost surely for all t ≥ 0.
To do this, set Tk = inf{t ≥ 0 : Xt /∈ [−k, k]}, and note that the stopped process

{XTk
t }t≥0 is bounded. Now for any convex f : R→ R, we can get a sequence {fn}

of C∞ functions with fn → f pointwise f ′n ↑ f ′−. Applying Ito’s formula to the
function fn, we get

(12) fn(XTk
t ) = fn(XTk

0 ) +

∫ t

0

f ′n(XTk
s )dXTk

s +
1

2

∫ t

0

f ′′n (XTk
s )d〈XTk , XTk〉s

so the claim holds for each n via Afnt =
∫ t
0
f ′′n (XTk

s )d〈XTk , XTk〉s.
As n → ∞, we have fn(XTk

t ) → f(XTk
t ) almost surely for any fixed t ∈ [0, Tk].

Taking the intersection over rationals gives that fn(Xt) → f(Xt) holds for all
t ∈ [0, Tk] ∩ Q almost surely. Now note that, we have f ′n(XTk

s ) → f ′−(XTk
s ) for

all s ∈ [0, Tk] almost surely and also that f ′n(XTk
s ) is uniformly bounded above,

since fn is continuous and XTk is bounded. Hence, the dominated convergence
theorem for stochastic integrals shows that the integral on the right side converges to∫ t
0
f ′−(XTk

s )dXTk
s uniformly on t ∈ [0, Tk] in probability. In particular, there exists

a subsequence {nj} which almost surely converges uniformly on [0, Tk]. Hence, with

probability one, the sequence {Afn1
t }t∈[0,Tk], {A

fn2
t }t∈[0,Tk], . . . converges pointwise

to a limit which we denote {Aft }t∈[0,Tk]. Since each {A
fnj

t }t∈[0,Tk] is non-decreasing,

this implies that {Aft }t∈[0,Tk] is also non-decreasing. Now use that Tk → ∞ holds

almost surely to get that {Aft }t≥0 is as desired.
Now choose a ∈ R and let us apply the result to the convex functions x 7→

(x−a)+ and x 7→ (x−a)−. We get non-decreasing processes {A+
t }t≥0 and {A−t }t≥0

satisfying

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1(a,∞)(Xs)dXs +
1

2
A+
t

(Xt − a)− = (X0 − a)− −
∫ t

0

1(−∞,a](Xs)dXs +
1

2
A−t

almost surely. Adding these together, we get:

(13) |Xt − a| = |X0 − a|+
∫ t

0

sign(Xs − a)dXs +
1

2

(
A+
t +A−t

)
almost surely, so the claim holds for Lat = 1

2 (A+
t +A−t ).

�
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We have established the existence of a process {Lat }t≥0 for each a ∈ R but at this
point it may be a bit mysterious. To see that this process deserves to be called a
local time, we make the following heuristic calculation: The function f(x) = |x−a|
has left-hand derivative f ′−(x) = sign(x − a) and distributional second derivative

f ′′(x) = δx−a. So, an application of Ito’s formula gives Lat =
∫ t
0
δXs−ad〈X,X〉s,

exactly as we prediced in (1).
For each a ∈ R, the process {Lat }t≥0 is non-decreasing, hence of bounded varia-

tion. So we can consider the Lebesgue-Stieljes measure with respect to this process,
and this defines a measure on the non-negative real line, which we denote dLat . In
some sense, the measure dLat encodes the amount of time spent at a by the semi-
martingale X. So, the following result is intuitive:

Lemma 2.2. For each a ∈ R, we have supp(dLat ) ⊆ {t ≥ 0 : Xt = a} almost surely.

Proof. Since (Xt − a)2 = |Xt − a|2, we have two ways to compute this common
value: use Ito’s formula for f(x) = x2 on the semimartingale Xt − a, or use Ito’s
formula for f(x) = x2 on |Xt− a| and then apply Tanaka’s formula. From the first
method, we have:

(14) (Xt − a)2 = (X0 − a)2 + 2

∫ t

0

(Xs − a)dXs + 〈X,X〉s.

And from the second method, we have:

|Xt − a|2 = |X0 − a|2 + 2

∫ t

0

|Xs − a|d(|X· − a|)s + 〈|X· − a|, |X· − a|〉s

= |X0 − a|2 + 2

∫ t

0

|Xs − a|sign(Xs − a)dXs + 2

∫ t

0

|Xs − a|dLas + 〈|X· − a|, |X· − a|〉s.

Now observe that we have both Xs − a = |Xs − a|sign(Xs − a) and 〈|X· − a|, |X· −
a|〉s = 〈X,X〉s. So, the two calculations above give

∫ t
0
|Xs − a|dLas = 0, which

implies supp(dLat ) ⊆ {t ≥ 0 : Xt = a}. Since everything above holds almost surely,
we get the conclusion almost surely. �

To get some intuition for the idea we just developed, consider the following image
that traces a sample path of a Brownian motion and its corresponding local time
at zero:
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2.2. As a Spatial Process. Now we change focus slightly, instead focusing on the
perspective that some time t ≥ 0 is fixed and we wish to study the distribution of
points that the process X has accumulated near.

It is not surprising that the answer to this new question will come in the form
of turning L into a sort of “occupation measure” for X. Of course, there must be
certain regularity properties satisfied for this to make sense. Without going into
the details, we give the following important result:

Lemma 2.3. There exists a process {L̃at } which, when viewed as map R × Ω →
[0,∞) for fixed t ≥ 0, is B(R)⊗ F-measurable and such that, for every a ∈ R, the

process {L̃at }t≥0 is a modification of {Lat }t≥0.

Throughout the remainder of this section, assume that L represents this mea-
surable modification of the local time which we previously constructed.

Theorem 2.4 (Occupation Formula). If {Xt} is a continuous semimartingale with
local time {Lat }t≥0,a∈R, then, almost surely, we have

(15)

∫ t

0

g(Xs)d〈X,X〉s =

∫
R
g(a)Lat da

for every t and for every positive measurable function g : R→ [0,∞).

Proof. First let f : R → R be any convex function, and consider the function
fn = f |Kn

for Kn = [−n, n]. On the set Kn, get constants αn, βn ∈ R such that
the identity

(16) f(x) = αnx+ βn +
1

2

∫
Kn

|x− a|f ′′(da)

holds for all x ∈ Kn. Now consider the stopped process {XTn
t }t≥0 up to time

Tn = inf{t ≥ 0 : Xt /∈ Kn}. We can use Tanaka’s formula to write

f(XTn
t ) = αnX

Tn
t + βn +

1

2

∫
Kn

|XTn
t − a|f ′′(da)

= αnX
Tn
t + βn +

1

2

∫
Kn

|XTn
0 − a|f ′′(da) +

1

2

∫
Kn

∫ t

0

sign(XTn
s − a)dXTn

s f ′′(da) +
1

2

∫
Kn

Lat f
′′(da)

= αn(XTn
t −X

Tn
0 ) + f(X0) +

1

2

∫
Kn

∫ t

0

sign(XTn
s − a)dXTn

s f ′′(da) +
1

2

∫
Kn

Lat f
′′(da).

Now let us inspect the double integral term. Since the sign function is bounded
and f ′′(da) is a finite measure on Kn, we can apply Fubini’s theorem for stochastic
integrals to change the order of integration. Then use the identity

(17)
1

2

∫
Kn

sign(XTn
s − a)f ′′(da) = f ′−(XTn

s )− αn

to get
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1

2

∫
Kn

∫ t

0

sign(XTn
s − a)dXTn

s f ′′(da) =
1

2

∫ t

0

(f ′−(XTn
s )− αn)dXTn

s

=
1

2

∫ t

0

f ′−(XTn
s )− α(XTn

t −X
Tn
0 ).

Plugging this into the equation above gives

(18) f(XTn
t ) = f(XTn

0 ) +

∫ t

0

f ′−(XTn
s )dXTn

s +
1

2

∫
Kn

Lat f
′′(da).

Now consider taking n → ∞. Note that the second integral on the right is just
a Lebesgue integral (with a random integrand) and that Kn ↑ R, so monotone
convergence applies. Moreover, for the remaining terms we note that Tn → ∞
holds almost surely. Thus, we get that

(19) f(Xt) = f(X0) +

∫ t

0

f ′−(Xs)dXs +
1

2

∫
R
Lat f

′′(da).

holds almost surely. This can be viewed as a sort of generalization of Ito’s formula
to convex functions, and is sometimes referred to as the Ito-Tanaka formula.

Now we prove the main claim. For p, q, ε ∈ Q with p < q and ε > 0, let gp,q,ε
denote the function which is equal to zero on (−∞, p− ε]∪ [q+ ε,∞), equal to one
on [p, q], and linear in between these values. Then gp,q,ε is the second derivative of
some convex C2 function, namely fp,q,ε(x) =

∫
R |x− a|gp,q,ε(a)da, and f ′′p,q,ε(da) is

just gp,q,ε(a)da. Now we can apply both Ito’s formula and the Ito-Tanaka formula
to get:

fp,q,ε(Xt) = fp,q,ε(X0) +

∫ t

0

(fp,q,ε)
′
−(Xs)dXs +

1

2

∫ t

0

gp,q,ε(Xs)d〈X,X〉s

= fp,q,ε(X0) +

∫ t

0

(fp,q,ε)
′
−(Xs)dXs +

1

2

∫
R
Lat gp,q,ε(a)da.

Since the terms on the right side of each line must agree, this shows that the occu-
pation formula holds for gp,q,ε almost surely. Since there are only countably many
triples (p, q, ε) as above, we conclude that, with probability one, the occupation
formula holds for all functions in the collection G = {gp,q,ε : p, q, ε ∈ Q, p < q}.

On this event of probability one, let H denote the collection of all measurable
functions g : R→ R for which the occupation formula holds. By monotone conver-
gence, we see that H is closed under pointwise non-decreasing limits. Consequently,
since elements of G can approximate open sets from below, the previous observation
gives 1U ∈ H for all open sets U ⊆ R. Also, it is easy to see that satisfaction of
the occupation times formula is closed under finite sums and by multiplication by
scalars. Therefore, the monotone class theorem shows that H contains all bounded
measurable functions. But applying monotone convergence for the positive and
negative parts separately, this implies that H contains all measurable functions,
hence the claim is proved. �
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A consequence of the occupation formula is that Ito’s formula holds for some
functions that are not C2, namely for functions f : R → R that are twice differ-
entiable with f ′′ locally bounded. Strictly speaking this could have been proved
with the same monotone class argument that we uesd at the end of the proof of the
occupation formula.

2.3. As a Space-Time Process. As our last step, we consider L as a function of
both variables t and a simultaneously. In a sense, this means we can consider the
random field of local times {Lat }t≥0,a∈R. We state but do not prove the next result:

Theorem 2.5. For any continuous semimartingale X, there exists a modification
of {Lat }t≥0,a∈R which, almost surely, is continuous in t and cadlag in a. If X is
a local martingale, then the modification can be taken to be jointly continuous in
(t, a).

Throughout the remainder of the talk, we assume that L represents the modifi-
cation guaranteed above.

We also remark that much finer statements about the continuity of L are under-
stood than just what is written above. For example, it can be shown that, for a
local martingale X, the smoothness of L in a is Hölder continuous with exponent
α for all α < 1

2 . Moreover, the quadratic variation of the process a 7→ Lat can, in
some cases, by written rather explicitly.

Our last result of this section is to justify that our definition of local time also
coincides with the second intuitive notion we came up with at the beginning of the
talk. Specifically, we want to show that the “limiting occupation time” gives the
local time.

Lemma 2.6. If X is a continuous semimartingale, then, almost surely, we have

(20) Lat = lim
ε→0

1

ε

∫ t

0

1[a,a+ε)(Xs)d〈X,X〉s

for all a ∈ R and t ≥ 0. If X is a continuous local martingale, then, almost surely,
we have

(21) Lat = lim
ε→0

1

2ε

∫ t

0

1(a−ε,a+ε)(Xs)d〈X,X〉s

for all a ∈ R and t ≥ 0.

Proof. For the first claim, apply the occupation times formula with g(x) = 1[a,a+ε)

to get

(22)

∫ t

0

1[a,a+ε](Xs)d〈X,X〉s =

∫
R
1[a,a+ε](a

′)La
′

t da
′.

By the preceding theorem, Lat is almost surely right-continuous at a, so the funda-
mental theorem of calculus for Lebesgue integrals gives

(23)
1

ε

∫ t

0

1[a,a+ε](Xs)d〈X,X〉s =
1

ε

∫
R
1[a,a+ε](a

′)La
′

t da
′ → Lat ,

as claimed. The second claim follows by the same argument, using the second part
of the preceding result. �
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To visualize this space-time process, the image below is a simulation of a sample
path of a Brownian motion and of the correspond field of local times:

3. Brownian Local Times

In this section we specialize the theory above to the case of the one-dimensional
Brownian motion. As we will see, many of the abtract results above can be made
much more concrete in this setting.

Moreover, we must make a historical point: Most of the theory of local times
was first developed for Brownian motion, and the generalization to continuous
semimartingales came later. This explains why some straightforward definitions
and corollaries appear as named theorems and formulas in our presentation here.

Throughout this section we will focus mainly on the local time at zero, so we
write Lt in place of L0

t unless when we need to emphasize zero specifically. Also,
the underlying probability space and filtration will play more of a role in this
conversation; let (Ω,F ,P) denote the probability space on which a Brownian motion
B = {Bt}t≥0 is defined, and let {Ft}t≥0 denote a filtration of F to which B is
adapted. For any process X = {Xt}t≥0, let {FXt }t≥0 denote the natural filtration
of X, defined via FXt = σ(Xs : s ≤ t).

As a first observation, note that Tanaka’s formula immediately implies that we
have the following identity:

(24) |Bt| =
∫ t

0

sign(Bs)dBs + Lt.

The {FBt }t≥0-adapted local martingale βt =
∫ t
0

sign(Bs)dBs satisfies 〈βt, βt〉 =∫ t
0
(sign(Bs))

2ds = t, so by Levy’s characterization it is a {FBt }t≥0-Brownian mo-
tion. However, by the limiting occupation time lemma, we also have
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(25) Lt = lim
ε→0

1

2ε

∫ t

0

1(−ε,ε)(Bs)ds = lim
ε→0

1

2ε

∫ t

0

1[0,ε)(|Bs|)ds.

This proves that {Lt}t≥0 is adapted to {F |B|t }t≥0, hence that {βt}t≥0 is adapted

to {F |B|t }t≥0. In particular, this gives Fβt ⊆ F
|B|
t for all t ≥ 0.

We can get an even more refined understanding of the relationship between
|B|, β, and L with a little more work. To establish this, we will need the following
deterministic lemma:

Lemma 3.1 (Skorokhod). Let y : [0,∞) → R be a continuous function with
y(0) ≥ 0. Then the functions a, z : [0,∞)→ R defined as

(26) a(t) = sup
s∈[0,t]

y−(s) and z(t) = y(t) + a(t)

are the unique pair satisfying

(1) z = y + a,
(2) z is non-negative,
(3) a is non-decreasing, continuous, vanishing at zero, and the Lebesgue-Stieljes

measure da has support contained in the set {t ≥ 0 : z(t) = 0}.

Proof. The functions a and z satisfy (1) by construction. Also (2) holds because
any t ≥ 0 with y(t) ≤ 0 implies a(t) ≥ −y(t). For (3), it is clear that a is non-
decreasing, continuous, and vanishing at zero. To see the claim about the support
of the measure da(t), suppose that t ≥ 0 is any point with a(t + ε) − a(t − ε) > 0
for all ε > 0. Then y must achieve a new running minimum of some negative value
at t, and this implies z(t) = 0.

For uniqueness, suppose that ã and z̃ are another pair of functions satisfying the
properties above. Then a − ã = z − z̃ is a process of bounded variation, and the
integration by parts formula yields:

0 ≤ (z − z̃)2(t) = 2

∫ t

0

(z(s)− z̃(s))d(a− ã)(s)

= 2

∫ t

0

z(s)da(s)− 2

∫ t

0

z̃(s)da(s)− 2

∫ t

0

z(s)dã(s) + 2

∫ t

0

z̃(s)dã(s)

= −2

∫ t

0

z̃(s)da(s)− 2

∫ t

0

z(s)dã(s) ≤ 0.

In the last line, we used that supp(da) ⊆ {t ≥ 0 : z(t) = 0} and supp(dã) ⊆ {t ≥ 0 :
z̃(t) = 0} made two of the integrals vanish, and also that z, z̃ ≥ 0 implied that the
remaining two integrals were non-negative. This proves that we have z(t) = z̃(t)
for all t ≥ 0, hence a(t) = ã(t) for all t ≥ 0. �

Now consider applying the lemma to the identity |Bt| = βt +Lt. Almost surely,
L is non-decreasing, continuous, vanishing at zero, and has supported contained
in {t ≥ 0 : Bt = 0}, as we saw in the last section. The remaining hypotheses
are true by inspection. In particular this implies that a formula for the local time
is Lt = sups∈[0,t] β

−
s = sups∈[0,t](−βs). This implies that {|Bt|}t≥0 is adapted to
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{Fβt }t≥0, hence Fβt ⊇ F
|B|
t for all t ≥ 0. Combining this with our result from

earlier, we have come to the surprising conclusion that {Fβt }t≥0 = {F |B|t }t≥0.
We can also apply the deterministic lemma to derive a powerful identity in

law: Starting from the Brownian motion β, we get (|Bt|, Lt) via the deterministic
construction Lt = sups∈[0,t](−βs) and |Bt| = βt + Lt. If we apply the same deter-
ministic construction to an arbitrary Brownian motion B on any probability space,
we get (St − Bt, St) via St = sups∈[0,t](−Bs). Since β is just a Brownian motion,

this implies that the laws of (St−Bt, St) and (|Bt|, Lt) are identical. This is called
Levy’s identity and it makes the local time {Lt} into a much more intuitive object.

The following image can be used to visualize Levy’s identity:

We can also use Levy’s identity to deduce some concrete facts about local times
of Brownian motion. For example, since St is the inverse of a stable subordinator of
index 1/2, this shows that the same is true for the law of Lt. For another example,
note that we have St → ∞ almost surely, hence Lt → ∞ almost surely. By the
strong Markov property, this implies that Lat → ∞ holds almost surely for each
a ∈ R, a statement which can be interpreted as saying that, for any given point,
the Brownian motion spends an unbounded amount of time near it.

4. Tanaka’s SDE

There are tons of applications of the theory of local times, and here we focus on
one idea because it completes a conversation that we started earlier. We previously
noted the difference between existence of weak solutions and strong solutions to
a given SDE. In particular, we saw that SDEs of the form dXt = µ(t,Xt)dt +
σ(t,Xt)dBt admit strong solutions when µ and σ are Lipschitz in their second
argument.

A classical example of an SDE which admits weak solutions but not strong solu-
tions is due to Tanaka. (In particular this also shows that the Lipschitz condition
above cannot be completely removed.) Consider the following, called Tanaka’s
SDE:

(27)

{
dXt = sign(Xt)dBt

X0 = 0.

Of course, the function sign is not even continuous, hence not Lipschitz.
We already saw that this SDE admits a weak solution: If {Xt}t≥0 starts as a

Brownian motion on some space (Ω,F ,P), then the process {Bt}t≥0 defined via
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dBt = sign(Xt)dXt has 〈B,B〉t =
∫ t
0
(sign(Xs))

2ds = t and is hence a Brownian
motion. Moreover, dBt = sign(Xt)dXt implies dXt = sign(Xt)dBt, so the pair
(X,B) is a weak solution to the SDE.

To see that this SDE does not admit a strong solution, assume that on an arbi-
trary space (Ω,F ,P) there were a Brownian motion {Bt}t≥0 with natural filtration
{FBt }t≥0, and that some {FBt }t≥0-adapted process {Xt}t≥0 were a solution to the
SDE pathwise almost surely. By Tanaka’s formula and the SDE, this implies

(28) |Xt| =
∫ t

0

sign(Xs)dXs + Lt = Bt + Lt

where {Lt}t≥0 represents the local time of X at zero. But X is a local martingale,
so we know that

(29) Lt = lim
ε→0

1

2ε

∫ t

0

1[0,ε)(|Xs|)d〈X,X〉s

holds almost surely, hence B is {F |X|t }t≥0 adapted. Since X is is {FBt }t≥0-adapted

by assumption, we have FXt ⊆ F
|X|
t for all t ≥ 0. But this cannot be true because,

for example {X1 > 0} is measurable with respect to FX1 but not F |X|1 . So the SDE
cannot admit strong solutions.
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