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1. Introduction

1.1. Motivation. It’s often a useful idea to be able to change the rate at which a
stochastic process travels through its path, a construction we call applying a “time
change”. One reason for studying this type of construction is that it plays nicely
with the definition of a semimartingale: time changes of semimartingales remain
semimartingales.

Another reason for doing studying time-changes is a representation theorem
which states that many continuous local martingales can be made into a Brow-
nian motion by applying a standard time change related to its quadratic variation;
through this construction, one can sometimes deduce results about general contin-
uous semimartingales from more concrete results about Brownian motion.

1.2. Non-Random Time-Changes. It makes sense to first study time-changes
in a deterministic setting. If A : R≥0 → R is any non-decreasing, right-continuous
function with limt→∞At =∞, then we can define the function C : R≥0 → R as

(1) Cs = inf{t ≥ 0 : At > s}.

It follows that C is a non-decreasing, right-continuous function. Moreover, A and
C are related via the above identity and also via

(2) At = inf{s ≥ 0 : Cs > t},

so it can be seen that A and C play dual roles, and each completely determines
the other. By abuse of terminology, we’ll call A and C “inverses” even though
they are not always inveses in the exact sense. Also, for convenience of notation,
we’ll generally stick to the convention wherein we use t as the time variable in the
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2 TIME-CHANGES OF CONTINUOUS SEMIMARTINGALES

“original time-line” and we’ll use s as the time variable in the “transformed time-
line”. Consider the following image for a visualization of a pair of such functions:

Now we make some general remarks about the shape of such pairs of functions.
First of all, note that jumps in A correspond to flat stretches in C, and flat stretches
in A correspond to jumps in C. Observe also that A is continuous and strictly
increasing if and only if C is continuous and strictly increasing, in which case the
“inverses” A and C are honest-to-goodness inverses of each other.

Next we consider the behavior as time runs to infinity. For the sake of generality,
we drop the condition that limt→∞At =∞ and the condition that A is defined on
the entire domain R≥0. In fact, it is easy to see that if limt→∞At = S <∞, then
C is only defined on the domain [0, S). Dually, if A blows up in finite time and is
hence only defined on the domain [0, T ) for T < ∞, then C satisfies the growth
bound lims→∞ Cs = T . Consider the following image for an example of a pair of
processes with this phenomenon

In the case above, that A blows up in finite time, we will extend our definition
of A so that A ≡ ∞ on [T,∞]. (Such an extension remains right-continuous.)
Dually, we apply the same extension to C if C blows up in finite time. We say
that a time-change C is finite if Cs < ∞ holds for all s ≥ 0, or, equivalently, if
limt→∞At =∞.

These remarks should not be seen as exceptions or pathologies; rather they
should be seen as very important examples to include in the theory. Now we’ll
move onto the basic definitions and constructions in the random setting.

1.3. Basic Definitions. Let (Ω,F ,P) denote a big probability space on which
all of our random variables are defined, and let {Ft} denote a right-continuous
filtration of F .

Definition 1.1. A time-change with respect to {Ft} is a family {Cs} of {Ft}-
stopping times whose sample paths are almost surely non-decreasing and right-
continuous.
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Given a time-change C and a stochastic process {Xt}, it makes sense to define

the process {X̂s} via X̂s = XCs
. Of course, it would be silly to ask whether {X̂s} is

adapted, progressively measurable, predictable, etc. with respect to {Ft}. Instead,

it makes sense to consider the filtration {F̂s} defined via F̂s = FCs
. Note that,

from the right-continuity of {Ft} and {Cs}, we get the right continuity of {F̂s}.
Moreover, if {Xt} is {Ft}-progressively measurable, then {X̂s} is {F̂s}-adapted.

Now we should spend a moment solidifying the relationship between A and C in
this random setting. Pay attention to the measurability statements here:

Lemma 1.2. If {At} is an {Ft}-adapted, non-decreasing, right-continuous process,
then the random variables {Cs} as defined by (1) are a time-change. Conversely,
if {Cs} is any time-change, then {At} as defined by (2) is an {Ft}-adapted, non-
decreasing, right-continuous process.

Proof. That C is non-decreasing and right-continuous if and only if A is non-
decreasing and right-continuous follows from the result in the non-random setting,
which we do not prove here. To see that {At} being {Ft}-adapted implies that Cs

is an {Ft}-stopping time, note that we have the following identity for any t0 ≥ 0:

(3) {Cs < t0} =
⋃
t<t0
t∈Q

{At > s}.

Since {At > s} ∈ Ft ⊆ Ft0 , we have {Cs < t0} ∈ Ft0 . Since {Ft} is right-
continuous, this implies {Cs ≤ t0} ∈ Ft0 , hence Cs is an {Ft}-stopping time.

Conversely, note that if every Cs is an {Ft}-stopping time, then for any s0 ≥ 0
we have

(4) {At < s0} =
⋃
s<s0
s∈Q

{Cs > t}.

Now {Cs > t} ∈ Ft, so {At < s0} ∈ Ft, hence At is Ft-measurable. �

Now we consider the effect of time-changing on sample path properties of a
process. Clearly, if {Xt} is non-decreasing, then {X̂s} is also non-decreasing. Also,

if {Xt} is right-continuous, then {X̂s} is right-continuous. However, {X̂s} can fail
to be continuous when {Xt} is continuous, due to the jumps in {Cs}. Hence it is
useful to make the following definition which rules out this issue:

Definition 1.3. A process {Xt} is called {Cs}-continuous if, almost surely, X is
constant on the interval [Ct−, Ct] for all t ≥ 0.

From here we see that if {Xt} is continuous and {Cs}-continuous, then {X̂s} is
continuous. Another useful result related to the concept of {Cs}-continuity is that,
for any semimartingale {Yt}, the process Y has the same intervals of constancy as
the process 〈Y, Y 〉. (This was proved in an earlier section of R&Y.)

1.4. Examples. Let’s focus on a few examples to illustrate these ideas. First, we
note that, while deterministic time changes are certainly of interest, they are not
so interesting from the probabilistic point of view. Examples abound, but we do
not illustrate any here.
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Now for a random-time change. Let {Xt} be a standard Brownian motion on a
probability space (Ω,F ,P) with filtration {Ft}. Now set At = sup0≤u≤tXu, which
is clearly {Ft}-adapted. We know that A has many flat stretches, and it follows
that the dual process C contains many jumps. For a generic Brownian sample path
ω ∈ Ω, the sample paths {At(ω)} and {Cs(ω)} can be visualized as:

Now consider the time-changed process {X̂s}. For the same sample path ω as

above, we plot {Xt(ω)} and {X̂s(ω)} and we get:

In other words, we claim that we have X̂s = s for all s ≥ 0. To see this, note that
if I ⊆ R is an interval on which At ≡ Xt holds, then C is exactly the inverse of A,
which implies X̂s ≡ s on C−1(I). On intervals J where A is flat, C experiences a

jump, so X̂s “skips” the interval J entirely. In other words, we have C−1(J) = ∅,
so Xs ≡ s holds vacuously on J . This proves the result. (Note in this example that
{Xt} is not {Cs}-continuous.)

Now we consider a time change with important applications. Suppose that
{Zn}∞n=1 is a discrete-time Markov chain with state space R, and let λ : R→ (0,∞)
be any function. (Also assume that the transition kernel P for Z has P (x, {x}) = 0
so that there are no “unnoticeable” jumps.) Now let {Nt} be the counting process
which holds in state n for an independent exponential time of rate λ(Zn), then
which jumps to n + 1; let {Xt} be the continuous-time Markov process defined as
Xt = ZNt

. From here, we define the process {At} via At = inf{u ≥ 0 : {Xt}
experiences > t jumps in time ≤ u}, and dually, the process {Cs} has the property
that Cs equals the number of jumps in {Xt} in time ≤ s. Clearly each Cs is an
{Ft}-stopping time, so it follows that {At} is {Ft}-adapted. We can visualize the
processes {Cs(ω)}s≥0 and {At(ω)} for a single ω ∈ Ω as follows:
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The utility of this example is that the time-changed process {X̂s} has its jumps
occurring exactly at times s ∈ N, while the values of the process in between jumps
are the same as those of {Xt}. Visualizing {Xt(ω)} and {X̂s(ω)}, we see:

This specific time-change is referred to as uniformization, since it allows one to
“recover” the discrete-time structure of a Markov chain which is embedded in a
continuous-time Markov process. It is an important transformation in stochastic
optimal control, since it allows one to transform some continuous-time problems into
discrete-time problems for which direct analysis and computational approaches are
both considerably simpler.

Lastly, we note that the concept of time-changing generalizes the concept of
stopping. Indeed, if T is any {Ft}-stopping time, then Cs = s∧T is a time-change.
Importantly, this is an example of a time-change C which has lims→∞ Cs = T , so
its “inverse” A is not defined for all of R≥0.

2. General Theory

First we will establish that suitable time-changes of a continuous semimartingale
yield a semimartingale. In particular, this will imply that a suitable time-change
applied to a Brownian motion yield a continuous local martingale. Then we will
study a few partial converses, which establish that a suitable continuous local mar-
tingale can be given a time change under which it becomes a Brownian motion.

2.1. Time-Changes of Semimartingales. As before, let (Ω,F ,P) denote a prob-
ability space and {Ft} a right-continuous filtration of F .

First we consider the effect of time-changing on processes of finite variation, and
on their (Lebesgue-Stieljes) integrals:

Lemma 2.1. Let {Cs} be a time change, and let {Xt} be a continuous and {Cs}-
continuous process of finite variation, both with respect to {Ft}.

(1) The time-changed process {X̂s} is continuous and has finite variation, with

respect to the time-changed filtration {F̂s}.
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(2) If {Ht} is {Ft}-progressively measurable, then {Ĥt} is {F̂s}-progressively

measurable, and Ĥ · X̂ = Ĥ ·X.

Proof. (We drop the curly braces on our processes for notational convenience.) To
prove (1), we see that that X being continuous is immediate from continuity and
C-continuity. Then, if X has finite variation, then it can be written as X = X1−X2

where X1 and X2 are non-decreasing. Now we have X̂ = X̂1 − X̂2, and X̂1 and
X̂2 are both non-decreasing since this property is preserved under time-change.
Therefore, X̂ is of finite variation.

For (2), fix s0 ≥ 0, and define f : Ω× [0, s0]→ Ω× [0, Cs0 ] via f(ω, s) = (ω,Cs)

which is clearly (B([0, s0]) ⊗ F̂s;B([0, Cs0 ]) ⊗ FCs0
)-measurable. Then note that

we can write Ĥ = H ◦ f , where H, in particular, is (B([0, Cs0 ]) ⊗ F̂Cs0
;B(R))-

measurable. This shows that Ĥ is (B([0, s0]) ⊗ Fs0 ;B(R))-measurable, hence Ĥ is

{F̂s}-progressively measurable. The second part follows by proving the following
fact about deterministic time-changes for Lebesgue-Stieljes integrals:

(5)

∫ Cs

C0

HudXu =

∫ s∧A∞

0

HCu
dXCu

.

To prove this, let dX and dX̂ denote the Lebesgue-Stieljes measures for {Xt} and

{X̂s}, respectively. It suffices to prove that the pushforward measure C∗dX̂ is equal
to dX, since then the result will follow by applying the change-of-measure by C.
For any interval (t, t′], we have (dX)((t, t′]) = Xt′ −Xt by definition. Note that C
being non-decreasing implies that I = C−1((t, t′]) is an interval, it is clear that we

only need to check a few cases to show (C∗dX̂)((t, t′]) = Xt′ −Xt: If t ∈ (Cs−, Cs]
for some s ≥ 0, then the the left endpoint of I is closed at s, otherwise t = Cs for
some s so the left endopoint of I is open at s. If t′ ∈ (Cs′−, Cs′ ] for some s′ ≥ 0,
then the the right endpoint of I is open at s′, otherwise t′ = Cs′ for some s′ so
the right endopoint of I is closed at s′. In any case we have, by the continuity and
C-continuity of X, we have

(C∗dX̂)((t, t′]) = (dX̂)(C−1((t, t′]))

= XCs′ −XCs

= Xt′ −Xt,

so the result is proved. �

Next we consider the effect of time-changing on local martingales and on their
(stochastic) integrals:

Lemma 2.2. Let {Cs} be a time change which is finite almost surely (equivalently,
that the inverse process has limt→∞At = ∞) , and let {Xt} be a continuous and
{Cs}-continuous local martingale, both with respect to {Ft}.

(1) The time-changed process {X̂s} is a continuous local martingale with re-

spect to {F̂s}, and we have 〈X̂, X̂〉 = 〈̂X,X〉.
(2) If {Ht} is {Ft}-progressively measurable and has

∫ t

0
H2

ud〈X,X〉u < ∞
almost surely for all t ≥ 0, then we have

∫ s

0
Ĥ2

ud〈X̂, X̂〉u < ∞ almost

surely for all s ≥ 0, and Ĥ · X̂ = Ĥ ·X.
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Proof. For (1), let T be an {Ft}-stopping time, and define the time-changed stop-
ping time S = inf{s ≥ 0 : Cs ≥ T}. We have, for any s0 ≥ 0, the identity

(6) {S < s0} =
⋃
s<s0
s∈Q

{Cs ≥ T}

and that {Cs ≥ T} is F̂s measurable. Then F̂s ⊆ F̂s0 implies {S < s0} ∈ F̂s0 , so

the right-continuity of {F̂s} implies that S is an {F̂s}-stopping time.
(For a moment we’re going to switch to paranthetical notation instead of sub-

script notation, because iterated subscripts can get a little hard to read.) By

definition we have X̂S(s) = X̂(s ∧ S) = X(C(s ∧ S)). We would now like to use
X(C(s ∧ S)) = X(C(s) ∧ T ) in order to apply some martingale properties of X to

X̂, but the fact that C may experience a jump at S necessitates an extra step. To
do this, note that

(7) AT = inf{s ≥ 0 : Cs > T} ≥ inf{s ≥ 0 : Cs ≥ T} = S,

and also that AT ≥ S implies CS− = inf{t ≥ 0 : At ≥ S} ≤ T . Moreover, we have
CS ≥ T , hence T ∈ [CS−, CS ]. Therefore, the C-continuity of X implies that we

have X̂S(s) = X(C(s)∧T ). This proves that, if XT is a martingale with respect to

{Ft}, then X̂S is a martingale with respect to {F̂s}. So, if {Tn}∞n=1 is a sequence
of {Ft}-stopping times such that Tn → ∞ holds almost surely and such that XTn

is a martingale for each n, then {Sn}∞n=1 defined as Sn = inf{s ≥ 0 : Cs ≥ Tn}
is a sequence of {F̂s}-stopping times such that X̂Sn is a martingale for each n.
Moreover, since {Cs} is finite almost surely and Tn → ∞ holds almost surely, it
follows that we have Sn → ∞ almost surely. (Of course, if lims→∞ Cs < ∞, then

the Sn may be an eventually constant sequence at ∞.) Therefore, {X̂s} is a local
martingale.

To see that 〈X̂, X̂〉 = 〈̂X,X〉, note first that X̂2 − 〈X̂, X̂〉 is a local martingale
by definition. Also, X2 − 〈X,X〉 is a local martingale, and, since 〈X,X〉 has the
same intervals of constancy as X, the C-continuity of X implies that X2 − 〈X,X〉
is a C-continuous local martingale. Hence, (1) of this lemma (along with basic

properties of the ˆ operation) implies that X̂2 − 〈̂X,X〉 is a local martingale. By

uniqueness of the bracket, this forces 〈X̂, X̂〉 = 〈̂X,X〉.
For (2), note that the first part follows from part (2) of the previous lemma,

since 〈X,X〉 is an adapted process of finite variation, and since 〈̂X,X〉 = 〈X̂, X̂〉.
For the second part, it suffices to show that the quadratic variation of Ĥ ·X−Ĥ ·X̂
is identically zero. Expanding the quadratic variation via linearity we get

〈Ĥ ·X − Ĥ · X̂, Ĥ ·X − Ĥ · X̂〉

= 〈Ĥ ·X, Ĥ ·X〉 − 2〈Ĥ ·X, Ĥ · X̂〉+ 〈Ĥ · X̂, Ĥ · X̂〉.

Now we use some basic facts about stochastic integration, the result (2) of the
previous lemma, and the result (1) of this lemma, to simplify these terms. In
particular, we get
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〈Ĥ ·X, Ĥ ·X〉 = (〈H ·X,H ·X〉)̂
= (H2 · 〈X,X〉)̂
= Ĥ2 · 〈̂X,X〉

= Ĥ2 · 〈X̂, X̂〉,
and

〈Ĥ ·X, Ĥ · X̂〉 = Ĥ · 〈Ĥ ·X, X̂〉

= Ĥ · (〈H ·X,X〉)̂
= Ĥ · (H · 〈X,X〉)̂
= Ĥ2 · 〈̂X,X〉

= Ĥ2 · 〈X̂, X̂〉,

and, of course 〈Ĥ · X̂, Ĥ · X̂〉 = Ĥ2 · 〈X̂, X̂〉. Therefore, we have 〈Ĥ ·X − Ĥ ·
X̂, Ĥ ·X − Ĥ · X̂〉 = 0, so Ĥ · X̂ = Ĥ ·X holds. �

Combining these results we get the following important characterization of time-
changes of semimartingales:

Corollary 2.3. Let {Cs} be a time change which is finite almost surely, and let
{Xt} be a continuous and {Cs}-continuous semimartingale, both with respect to a
right-continuous filtration {Ft}.

(1) The time-changed process {X̂s} is a continuous semimartingale with respect

to the time-changed filtration {F̂s}, and we have 〈X̂, X̂〉 = 〈̂X,X〉.
(2) If {Ht} is {Ft}-progressively measurable and has

∫ t

0
H2

ud〈X,X〉u < ∞
almost surely for all t ≥ 0, then we have

∫ s

0
Ĥ2

ud〈X̂, X̂〉u < ∞ almost

surely for all s ≥ 0, and Ĥ · X̂ = Ĥ ·X.

Proof. Write X = M + A for M a local martingale and A a continuous adapted
process of finite variation. (The dual process of C does not appear in this proof,
so there is no danger in letting A denote the finite-variation piece of X.) Since
〈X,X〉 = 〈M,M〉 and X is C-continuous, we have that M is C-continuous, hence
A is also C-continuous. Now (1) follows from part (1) of each of the respective
lemmas above, and (2) follows from part (2) of each of the respective lemmas
above. �

2.2. Dambis-Dubins-Schwarz Theorem. In this subsection we study a partial
converse to the results of the last subsection. It shows that many processes admit
a time change under which they become a Brownian motion.

Theorem 2.4 (Dambis, Dubins-Schwarz). Suppose {Xt} is a continuous local
martingale with respect to {Ft}, satisfying X0 = 0 and limt→∞〈X,X〉t =∞ both
almost surely. The time-change

(8) Cs = inf{t ≥ 0 : 〈X,X〉t > s}
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has the property that that {X̂s} is an {F̂s}-Brownian motion, and also that {Xt}
can be written as Xt = X̂〈X,X〉t . We say that {X̂s} is the DDS Brownian motion
of {Xt}.

Proof. That {Cs} is a time-change follows from the fact that its “inverse” {〈X,X〉t}
is non-decreasing, continuous, and {Ft}-adapted. Since 〈X,X〉t →∞ holds almost
surely, we also have that {Cs} is finite almost surely. Moreover, recall that C has
jumps exactly where 〈X,X〉 has flat stretches, and that 〈X,X〉 and X have the
same flat stretches. This shows that X is C-continuous, so the lemma above applies,
and it shows that {X̂s} is a local martingale with 〈X̂, X̂〉s = 〈X,X〉Cs = s. So by

Lévy’s characterization, {X̂s} is an {F̂s}-Brownian motion.
For the second part, note that 〈X,X〉 is continuous so it has no jumps. However,

the flat stretches of 〈X,X〉 correspond to jumps in C. But since X is constant

wherever 〈X,X〉 is constant, it follows that we have Xt = X̂〈X,X〉t . �

The hypothesis that 〈X,X〉t → ∞ holds almost surely can be weakened at the
cost of including some additional randomness in the underlying probability space.
Specifically, by an enlargement of a filtered probability space (Ω,F , {Ft},P) we

mean another filtered probability space (Ω̃, F̃ , {F̃t}, P̃) and a map π : Ω̃ → Ω

satisfying π−1(Ft) ⊆ F̃t and π∗P̃ = P on Ft for all t ≥ 0.
Also, we will need a previous result from earlier in R&Y which we now state but

do not prove: If X is continuous local martingale, then limt→∞Xt exists almost
surely on the set {limt→∞〈X,X〉 < ∞}. Now we can state a generalization of the
DDS theorem as follows:

Theorem 2.5. Let (Ω,F ,P) be a probability space with {Ft} a right-continuous
filtration of F , and let {Xt} be a continuous local martingale with respect to {Ft}.
Also let {Cs} be the time-change as in the DDS theorem. Then, there exists an

enlargement (Ω̃, F̃ , {F̃s}, P̃) of (Ω,F , {F̂s},P) and an {F̃s}-Brownian motion {B̃s}
independent of {Xt} such that the process {Bs} defined via

(9) Bs =

{
X̂s if s < 〈X,X〉∞
X∞ + B̃s−〈X,X〉∞ if s ≥ 〈X,X〉∞

is an {F̃s}-Brownian motion.

Proof. We use the natural construction via product spaces to create our enlarge-
ment. Let (Ω′,F ′,P′) denote a probability space on which a Brownian motion {B′s}
is defined, and let {F̃s} denote its natural filtration. Now set Ω̃ = Ω × Ω′, define

the filtration {F̃s} via F̃s = F̂s ⊗ F ′s, and define the measure P̃ = P × P′. (Also,

we should set F̃ = σ(
⋃

s≥0 F̃s) as the ambient σ-algebra.) Now the process {B̃s}
defined as B̃s(ω, ω

′) = B′s(ω
′) is an {F̃s}-Brownian motion.

Now note that the process {Bs} can be written as

(10) Bs = X̂s +

∫ s

0

1{u > 〈X,X〉∞}dB̃u.

This can be seen as follows: If s < 〈X,X〉∞, then u < 〈X,X〉∞ for all u ≤ s, so

the integral term is zero. If s ≥ 〈X,X〉∞, then Cs =∞ so X̂s = X∞, which exists
almost surely because 〈X,X〉∞ <∞.



10 TIME-CHANGES OF CONTINUOUS SEMIMARTINGALES

Since X̂s and the stochastic integral term are both local martingales, it follows
that {Bs} is a local martingale. Moreover, some basic facts about stochastic inte-
gration show that its quadratic variation is:

(11) 〈B,B〉s = 〈X̂, X̂〉s +

∫ s

0

1{u > 〈X,X〉∞}du.

where the cross-term vanished because X and B̃ are independent. Now observe that
this formula implies 〈B,B〉s = s, which can be seen as follows: If s < 〈X,X〉∞,

then the integral term vanishes and we have 〈B,B〉s = 〈X̂, X̂〉s = s, as in the proof
of the original DDS theorem. Otherwise s ≥ 〈X,X〉∞ and the integral term is equal
to s− 〈X,X〉∞ ≥ 0. Adding this to the first term gives 〈B,B〉s = s as needed. So,

by Lévy’s characterization, the process {Bs} is an {F̃s}-Brownian motion. �

2.3. Knight’s Theorem. In this next subsection we address generalizing the DDS
theorem to continuous local martingales in Rd for d ≥ 2. (In many cases we
particularly want to understand the d = 2 case.) To get started, let (Ω,F ,P) be
a probability space with a right-continuous filtration {Ft}. Let {Xt} be an {Ft}-
adapted process taking values in Rd, and, for each 1 ≤ k ≤ d, let Xk

t denote the kth
coordinate of Xt. Recall that, we say that {Xt} is a local martingale with respect
to {Ft} if {Xk

t } is a local martingale with respect to {Ft} for each k.
The next result shows that, if {Xt} is a local martingale in Rd with respect to

{Ft}, then there exists a time change for each coordinate such that the resulting
process is a d-dimensional Brownian motion.

Theorem 2.6 (Knight). Let {Xt} be a local martingale in Rd with respect to {Ft}
such that X0 = 0 and such that limt→∞〈Xk, Xk〉t = ∞ and 〈Xk, X`〉t = 0 hold
almost surely for all 1 ≤ k 6= ` ≤ d. Then define, for each k:

(12) Ck
s = inf{t ≥ 0 : 〈Xk, Xk〉t > s}.

It follows that the process {X̂s} defined via X̂k
s = Xk

Ck
s

is a d-dimensional Brownian

motion (with respect to its natural filtration).

Proof. By the DDS theorem, each coordinate {X̂k
t } is a Brownian motion. So, it

only remains to show that the coordinates are independent. To do this, let 0 ≤ t0 <
t1 < · · · < tp and λ1, . . . λp ∈ Rd be arbitrary, and define fk =

∑p
j=1 λ

(k)
j 1(tj−1,tj ].

Now set

(13) Yt =

d∑
k=1

∫ t

0

fk(s)dX̂k
s ,

and note that our previous results and the assumption that 〈Xk, X`〉t = 0 imply
that the quadratic variation of Y is equal to

(14) 〈Y, Y 〉t =

d∑
k=1

∫ t

0

f2k (s)ds.
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Now recall by Ito’s formula that It = exp(iYt + 1
2 〈Y, Y 〉t) is a complex local mar-

tingale, but |Yt| ≤ exp( 1
2

∑
k=1 ||fk||2L2) implies that it is bounded and hence a

martingale. This implies that we have E[Yt] = E[Y0] = 1, hence

E

exp

i d∑
k=1

p∑
j=1

λ
(k)
j (X̂tj − X̂tj−1

)

 = E

exp

−1

2

d∑
k=1

p∑
j=1

(
λ
(k)
j

)2
(tj − tj−1)

 .
The right side is the characteristic function for a multivariate Gaussian with inde-
pendent coordinates, which finishes the proof. �

A few remarks are now necessary. First, as expected by analogy with the case
of the DDS theorem, there is a generalization of Knight’s theorem which allows
the coordinate-wise quadratic variations to be bounded, provided that we englarge
the underlying probability space. We do not state or prove this generalized version
here, but details can be found in R&Y.

Next we remark that, since different time-changes may be required for each
coordinate, there is no time-changed filtration to which we can immediately say
that {Bs} is adapted. However, if the coordinate-wise quadratic variations are all
identical, then inspection of the proof reveals that such a time-changed filtration
does exist.

3. Applications

In this last section we turn to an application of these ideas of time-changes
that we have just studied. The approach for all of these examples is more or less
the same: If there is a known property of Brownian motion which is preserved
under time-change, then we can “bootstrap” the same result to any continuous
local martingale by the DDS theorem.

As a first example, we prove a general version of the law of the iterated logarithm.
Recall that for a Brownian motion {Bt} we have, almost surely:

(15) lim sup
t→∞

Bt√
2t log log t

= 1 and lim inf
t→∞

Bt√
2t log log t

= −1.

Now let {Xt} be a continuous local martingale. Let {X̂s} be the DDS Brownian
motion of {Xt}, which we may need to enlarge the probability space to acquire.

Recall from the DDS theorem that we can write X̂〈X,X〉t = Xt. Therefore, on the
event {〈X,X〉∞ =∞}, we have the following almost surely:

lim sup
t→∞

Xt√
2〈X,X〉t log log〈X,X〉t

= 1

and lim inf
t→∞

Xt√
2〈X,X〉t log log〈X,X〉t

= −1.

As in the case of Brownian motion, this result characterizes the sharp denominator
for which a limit almost surely does not exist.

For another application, we prove the Burkholder-Davis-Gundy inequalities by
assuming that the result is known for Brownian motion. (Proving the result for
Brownian motion is not trivial, but it is at least easier than the general case.) In
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other words, assume that, for any p ∈ (0,∞), there exists constants cp, Cp > 0 such
that for any stopping time T we have

(16) cpE
[
T

p
2

]
≤ E

[(
sup

0≤t≤T
Bt

)p]
≤ CpE

[
T

p
2

]
.

Now suppose that {Xt} is a continuous local martingale and {X̂s} is its DDS

Brownian motion. Using X̂〈X,X〉t = Xt and the stopping time T = limt→∞〈X,X〉t,
this implies

(17) cpE
[(

lim
t→∞
〈X,X〉t

) p
2

]
≤ E

[(
sup
t≥0

Xt

)p]
≤ CpE

[(
lim
t→∞
〈X,X〉t

) p
2

]
,

where cp, Cp > 0 are are before.
Another large collection of applications is in the circle of ideas around the confor-

mal invariance (up to time-change) of planar Brownian motion. This is the content
of the next section of R&Y, so we won’t go through the details today.
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