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Motivation 1

For some regression problems, we want to use a basis expansion whch
is not smooth like piece-wise polynomials, splines, etc. This is
particularly important in signal processing and image processing.

Important distinction when making modeling decisions
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Motivation 2

The standard tools for signal processing (and image processing, to a
degree) are Fourier methods which use the complex exponentials as a
basis. Why not just use these?

Complex exponentials are “localized in frequency but not localized in
time”.

time domain frequency domain

Can we localize in both frequency and time? By the uncertainty
principle, there are fundamental limits to how tightly you can do these
simultaneously.
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Motivation 2 (cont’d)

However, some clever constructions can balance this trade-off:
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Introduction

A wavelet is a wave-like (smooth) function with small (compact)
support. Usually we consider a large (infinite) system of wavelets
which form a basis for a suitable function space.

The localization in both time and frequency leads to the concept of
multi-resolution analysis

The process of wavelet smoothing is just a least-squares projection
onto a function subspace spanned by a small number of the possible
wavelets (cf. low-pass filtering in signal processing)

There are important differences between continuous-time and
discrete-time wavelet theory

Lots of different choices of wavelet systems, each with their own
advantages and disadvantages.

Adam Quinn Jaffe Wavelet Theory for Statistical Signal Estimation March 19, 2020 5 / 30



Mathematical Background
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Some Functional Analysis

Let L2(S) denote the hilbert space of real-valued, square-integrable
functions from a set S to R (or C)

An orthonormal basis for L2(S) is a collection V = {vi}∞i=1 ⊆ L2(S)
such that span(V ) is dense in L2(S), and with 〈vi , vj〉 = 0 when i 6= j
and 1 when i = j . In particular, any vector x ∈ L2(S) can be written
uniquely as f =

∑∞
i=1 fivi for some constants {fi}∞i=1 ⊆ R called the

coordinates of f with respect to V .

One classical orthonormal basis for L2([0, 1]) is the set of complex
exponentials E = {exp(2πinx)}∞n=0; the coordinates of a function
f ∈ L2([0, 1]) in the basis of E is called the Fourier series of f .
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Some Functional Analysis

Another classical orthonormal basis for L2([0, 1]) is H, the triangular
array of Haar functions, along with the constant function:

...
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Multi-Resolution Analysis

Definition

A multi-resolution analysis (MRA) of L2(R) is a collection of closed
subspaces {Vj}∞j=−∞ or L2(R) satisfying the following properties:

(1) {0} ⊆ · · · ⊆ V2 ⊆ V1 ⊆ V0 ⊆ V−1 ⊆ V−2 ⊆ · · · ⊆ L2(R)

(2) V0 is the closed linear span of a compactly-supported function
φ ∈ L2(R) and its integer-translates φm(x) = φ(x −m)

(3) If f ∈ Vk , then g(x) = f (x −m2k) has g ∈ Vk for all m ∈ Z.

(4) Writing g(x) = f (2x), we have f ∈ Vk if and only if g ∈ Vk+1

There is some disagreement on the indexing convention for {Vj}
There is a very simple MRA related to the Haar system H, but its
generators have some undesirable properties

Can we find an MRA whose generators are “nice”?
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Multi-Resolution Analysis (cont’d)

If {Vj} is any MRA, we have

L2(R) =
−∞⋃
j=∞

Vj (1)

For each j , we have Vj ⊆ Vj−1, so there exists a closed subspace
Wj ⊆ Vj−1 such that Vj ⊕Wj = Vj−1.

Note that {Wj}j are orthogonal subspaces, since for any k ≥ j + 1 we
have

Wj ⊥ Vj ⊇ Vk−1 ⊇Wk (2)

Now by induction we have the following for any J:

L2(R) = VJ ⊕
−∞⊕
j=J

Wj =
−∞⊕
j=∞

Wj (3)
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Multi-Resolution Analysis (cont’d)

Suppose that V0 is generated by φ and its translates. Then
φ(x/2) ∈ V1 ⊆ V0, so we can find coefficients {aj} with

φ
(x

2

)
=
−∞∑
j=∞

ajφ(x − j) ⇒ φ(x) =
−∞∑
j=∞

ajφ(2x − j) (4)

The second part is called the refinability equation.

Using these coefficients, define

ψ(x) =
−∞∑
j=∞

(−1)ja1−jφ(2x − j) (5)

We call φ and ψ the father wavelet and mother wavelet respectively.
It turns out that ψ and its translates form an orthonormal basis for
W0, even though φ and its translates need not be an orthonormal
basis for V0.
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Multi-Resolution Analysis (cont’d)

Let φj ,k(x) = 2−j/2φ(2−jx − k) denote the father wavelet with
altered scaling and centering, called a son. Similarly let
ψj ,k(x) = 2−j/2ψ(2−jx − k) be a daughter.

Now for any f ∈ L2(R) and any J, we can write

f (x) =
∞∑

k=−∞
aJ,kφj ,k(x) +

−∞∑
j=J

∞∑
k=−∞

bj ,kψj ,k(x) (6)

The coefficients {bj ,k} of the daughters are called the detail and they
are uniquely determined by f . (They can be found via orthogonal
projection of f onto the closure of

⊕−∞
j=J Wj .) However, the

remaining coefficients {aJ,k}, called the gross, are not uniquely
determined in general.

There is a degree in freedom in choosing J, and this will be useful for
applying these ideas to discrete-time signals later.
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Example: Haar MRA

∫ ∞
−∞

ψ(x)dx = 0
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Multi-Resolution Analysis (cont’d)

Often we are interested in systems of wavelets whose father and
mother are continuous and compactly supported. Does such a system
exist? The answer is yes but it was highly non-trivial to confirm.

Suppose that the support of ψ is fixed as a compact set K ⊆ R.
There are two reasonable questions to ask:

Which mother ψ with supp(ψ) = K is the smoothest?
Which mother ψ with supp(ψ) = K has the most vanishing moments?

If ψ has p vanishing moments, then 〈f , ψ〉 = 0 for any degree-(p − 1)
polyomial f . In particular, V0 must then contain all degree-(p − 1)
polyomials.
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Example: Debauchies’ Symmlet MRA

∫ ∞
−∞

x jψ(x)dx = 0, for all j = 0, 1, . . . 7
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Wavelet Transforms
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Continuous-Time Wavelet Transform

Let φ and ψ be compactly-supported father and mother wavelets, and
let ΨJ be the basis of

⊕−∞
j=J Wj consisting of the daughters of ψ

whose resolutions are at least as low as 2J . Let Ψ =
⋃∞

J=−∞ΨJ be

the basis of
⊕−∞

j=∞Wj consisting of all daughters of ψ.

Let W : L2([0, 1])→ `2(R) denote the linear operator which expresses
f in the coordinates of Ψ, called the complete wavelet transform

For any J, let WJ : L2([0, 1])→ `2(R) denote the linear operator
which first projects orthogonally onto

⊕−∞
j=J Wj , then expresses the

resultant vector in the coordinates of Ψ. Call this the partial wavelet
transform for level J.
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Discrete-Time Wavelet Transform

In discrete-time, father and mother wavelets φ and ψ are any
functions [N]→ R which satisfy the refinement equations. Assume
N = 2n for simplicity.

The lowest possible resolution for such functions is 1 and the highest
possible resolution is N = 2n. Hence, the spanning criterion reduces
to

L2([N]) = VJ ⊕
0⊕

j=J

Wj =
0⊕

j=n

Wj (7)

for any 0 ≤ J ≤ n.

Again, let ΨJ be the basis of
⊕0

j=J Wj along with Ψ =
⋃0

J=−∞ΨJ .

Let W : L2([N])→ L2([N]) denote the linear operator which expresses
f in the coordinates of Ψ; in discrete-time this is just a matrix. For
any J, let WJ be defined analogously.
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Fast Wavelet Transform (FWT)

The transformation W is an N × N matrix, but Wf can be computed
from f in O(N) time (cf. Ω(N2) for general matrix-vector
multiplication, or O(N logN) for FFT).

For the Haar basis, this is easy to see by example; for general MRA,
this is possible because of the refinement equations

The strategy is a class of algorithms called pyramid algorithms which
are common in image processing.
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Isometric Propteries

In either continuous-time or discrete, the wavelet transform enjoys
many nice properties:

(Orthogonality) For any θ1, θ2 ∈ L2([N]), we have
〈Wθ1,Wθ2〉 = 〈θ1, θ2〉
(Isometry) For any θ ∈ L2([N]), we have ||Wθ|| = ||θ||
(Isomorphism) The map W is a bijection
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Signal Estimation
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Problem Statement

Suppose that f : [0, 1]→ R is an unknown function and that the
vector yi ∈ RN is observed, where

yi = f (ti ) + zi , ti = (i − 1)/N, zi ∼ N(0, σ2). (8)

How should one estimate the vector (f (ti ))i ∈ RN from y?

Generally, we assume that f comes from some class of functions F
which imposes smoothness conditions, and then we study the
minimax risk over the whole class.

Often we assume that F is a Sobolev ball

Wm
2 (C ) =

f : [0, 1]→ R;
m∑
j=0

∣∣∣∣∣∣∣∣dk f

dtk

∣∣∣∣∣∣∣∣2
L2([0,1])

≤ C

 (9)

for some m ∈ {0, 1, 2, . . . } and some C > 0.
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Simple Approaches

One way to phrase this problem is via an optimization in the wavelet
domain. Importantly, this is only possible because W being orthogonal
implies that the transformed noise is also independent gaussian!

However, we have Im(W) = L2([N]), so the problem

minimize ||y −Wθ||22
over θ ∈ L2([N])

experiences too much over-fitting. The solution is always θ = WTy .

So, add some regulatization! An `2 penalty will just shrink the
coefficients, but this is usually not a sufficient reduction. An
`1-penalty will force some coefficients to go to 0, so the effect is
similar to low-pass filtering in order to remove noise.
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Regularization

If we set-up the optimization problem,

minimize ||y −Wθ||22 + 2λ||θ||1
over θ ∈ L2([N])

then the explicit solution is given by the soft-threshholding operator:

θ̂j = ηλ(y∗j ) = sign(y∗j )(|y∗j | − λ)+ (10)

where y∗ = WTy is the inverse FWT of the observed signal y .

But how should we choose λ? One idea is to use the expectation of
the maxima of the independent Gaussian noise terms, λ = σ

√
2 logN.

Another idea is to choose λ adaptively, using Stein’s unbiased risk
estimator (SURE).
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Stein’s Unbiased Risk Estimator

Lemma (Stein, 1981)

If X ∼ N(µ, σ2IN) is a multivariate gaussian with µ ∈ RN , and
δ : RN → RN is a C 2 estimator of µ, then

E
[
||δ(X )− µ||2

]
= N + E

[
||δ(X )− X ||2 + 2∇ · (δ(X )− X )

]
. (11)

In other words,

R(X ) = N + ||δ(X )− X ||2 + 2∇ · (δ(X )− X ) (12)

is an unbiased estimator of the risk of δ, called Stein’s unbiased risk
estimator (SURE).

If δλ is a parameterized family of estimators, then Stein’s lemma
suggests that a method for choosing λ is to minimize Rλ with respect
to the observed data.
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Adaptive Threshholding

In the setting above, we have a family of soft-threshholding operators,
so we can (heuristically) choose λ by minimizing SURE.

SURE amounts to

Rλ(X ) = N − 2#{1 ≤ i ≤ d : |Xi | ≤ λ}+
N∑
i=1

(|Xi | ∧ λ)2. (13)

Computing the minimizer λ∗ is easy if the Xi are sorted, so it can be
found in O(N logN) time. The process of soft threshholding already
takes O(N) time, so we have only increased the running time by a
factor of logN.

In addition to choosing λ adaptively, we can choose a different λj for
each level of detail j . That is, we should choose λ∗j optimally
according to SURE, but only with respect to the wavelet coefficients
that correspond to details at level j .
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SureShrink

Let X ∈ RN denote the observed signal, and let w = WTX denote its
wavelet transform. For each j , write wj for the vector (wk+2j )

2j

k=1.

Definition

For each level j , let µj : R2j → R2j denote the following: Partition the
indices {1, 2, . . . 2j} into two sets I , I ′ uniformly at random, then let
λ∗j (wI ) and λ∗j (wI ′) denote the SURE-optimal threshholds with respect to
the given subset of the data. Then set:

(µj(wj))k =


η√2σ log N(wk) if σ2

√
N

∑N
i=1(w2

i − 1) ≤ (logN)
3
2

ηλ∗j (wI )(wk) else, if k ∈ I ′

ηλ∗j (wI ′ )
(wk) else, if k ∈ I

(14)

Finally, let f̂ denote the inverse wavelet transform of the vector
(µ0(w0), µ1(w1), . . . µlog N(wlog N)).
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SureShrink

The estimator f̂ defined on the previous slide is called SureShrink.
Once a certain wavelet transform / inverse transform has been
specified, the estimator only depends on the observed signal.

Intuitively, the idea is as follows: If there is not overwhelming
evidence that the signal is non-trivial, then we set the threshhold to
be the expected maximum value of the noise. Else, we adaptively
choose a soft threshhold for each level, but we learn this parameter
from half of the data and apply it to the other half.

In practice, the data-splitting scheme does change the estimator too
much. But this scheme is essential for the analysis of the risk of the
estimator.

This procedure takes O(N logN) time to compute.
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Optimality

Theorem (Donoho and Johnstone, 1994)

Suppose that the wavelet transform W corresponds to a multi-resolution
analysis whose mother wavelet has r vanishing moments and r continuous
derivatives. If r > σ, then SureShrink is asymptotically minimax in the
following sense: For any m ∈ Z+,C > 0, we have

inf
δ

sup
f ∈Wm

2 (C)
R(δ, f ) � sup

f ∈Wm
2 (C)

R (̂f, f ) (15)

as N →∞, where the infimum is taken over all estimators δ of f .

The most surprising thing above this result is that SureShrink is minimax
over a huge smoothness class for the possible underlying signal. That is, it
is able to estimate the smoothness adaptively without relying on external
information. (In fact, it is minimax over an even larger smoothness class
but we have focused on the Sobolev ball for simplicity.)
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Thank you!
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