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Fix X1,..., X, in R™and k € N
The empirical k-means clustering problem is

minimize 3" minge[ja — X;||?
over ACR™
with 1< #ALE

An optimal A, is called a set of empirical k-means cluster centers

Asymptotic theory for A, as n — oo if Xy,..., X, are i.i.d. samples?
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What is the corresponding population-level problem?
The population k-means clustering problem is

minimize E [minge [la — X||?]
over A CR™
with 1<#A<LE

An optimal A is called a set of population k-means cluster centers

Write dy (A, B) for the Hausdorff distance between non-empty finite
subsets of R™, i.e. the smallest distance for any matching from A to B.



Theorem (Pollard 1981)
IfE||X||? < oo, then du(An, A) — 0 almost surely.

Many other results studying convergence of the optimal distortion

but not the cluster centers

Want further results for some modern problems...



I. Introduction
II. Consistency — Adaptivity & Geometry
III. Inconsistency — Heavy Tails

IV. Future Work



II. Consistency — Adaptivity & Geometry



Adaptivity.
Pollard assumes n — oo while k is fixed
In practice k is selected from the data!

Asymptotic theory when k is selected from the “elbow method”?
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Fix X1,..., X, and define the distortion of k as

1 n
m(k) := min — Y min|a— X;|°
ACR™ 1 4 acA
1<#A<k =1



Fix X1,..., X, and define the distortion of k as

1 n
m(k) := min — Y min|a— X;|°
ACR™ 1 4 acA
1<#A<k =1

Then set:

k(X1,...,X,) = ar%;r;ax<m(k +1)+m(k—-1)— 2m(k)>



The empirical elbow-method k-means clustering problem is

minimize > minge[ja — X;|?
over ACR™
with 1< #A< KX, .., X))



The empirical elbow-method k-means clustering problem is

minimize > minge[ja — X;|?
over ACR™
with 1< #A< KX, .., X))

Let A,, denote an optimizer.

Population-level problem is analogous, let A denote optimizer



Theorem (AQJ 2025)
IfE|| X|? < oo, then dy(An, A) — 0 almost surely.

Similar result for k-medoids , where k is
fixed but domain is chosen from the data.



Geometry.

The field of distributional data analysis concerns statistical inference
where the data are probability distributions themselves

Applications in demography , econometrics
, Bayesian statistics

, ete.

Define the Wasserstein distance Wa(u,v) via

W2(u,v) == min / e — y|%dn(z,y)
mell(p,v) Jrm xRm



Fix p1, ..., puy probability measures on R™ and k € N.

The empirical k-barycenters clustering problem is

minimize 37 min, e W3 (p;, v)
over A C Py(R™)
with 1< #A<k

An optimal A, is called a set of empirical k-barycenters cluster centers

Population-level problem is analogous, let A denote optimizer.
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Theorem (AQJ 2025)
If EW2(u,80) < oo, then dy(An, A) — 0 almost surely.

Extends results for Wassestein barycenters

Similar results for other metric spaces (X, d), extending results from
functional data analysis



III. Inconsistency — Heavy Tails



Pollard shows consistency when E[ X||? < oc.

When k = 1 the optimal cluster center is just the mean, so SLLN
implies consistency when E||X|| < oo.

Do we have consistency for general & > 2 and E|| X|| < co?



Suppose X1, ..., X, ii.d. with symmetric Pareto(2) distribution
1
P(|X]|>1t) = 2
Note E|X|? = oo but E|X|? < oo for all 1 < p < 2.
Consider k-means clustering for k = 2
Unique set of population 2-means cluster centers is A = {—2,2}.

Consistency of empirical k-means cluster centers?
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Let A, = {an,b,} C R with a, < b, denote the empirical k-means
cluster centers for the Pareto(2) distribution when k = 2.



Let A, = {an,b,} C R with a, < b, denote the empirical k-means
cluster centers for the Pareto(2) distribution when k = 2.

Theorem (Blanchard-AQJ-Zhivotovskiy 2025)
There exists a universal constant ¢ > 0 such that the cases

Vn o> o VT

—c and n > C
logn logn

an <

both occur infinitely often almost surely.

Consequently, limsup,, . dg(A,,.A) = oo almost surely.

So k-means clustering can be inconsisent even when E|| X|| < oo
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Explanation: extreme outcomes create clusters with few points!

Roughly speaking, we have with high probability:

X, )
{() = Q(\/ﬁ)} C {there exists a cluster with O(1) samples}
X(n-1)

Relationship between cluster imbalance and statistical rates of
convergence



Positive results when E|| X || < oo?

For a € A, define the Voronoi regions
Vola) :=={X;: |la — X;|| < ||’ — X;|| for all ' € A,}
Elementary bound:

S I
#V0(a)

If min,c 5 #Vn(a) = Q(n~') then {A, }nen is uniformly bounded.

lla]| < for all a € A,

Pollard: If E[|X||* < oo, then min,¢ 5 #Vn(a) = Q(n~') almost surely.



Consider constrained k-means clustering where each cluster is required
to contain at least v, € N many samples.

Some existing work on computational and methodological
considerations , but no statistical theory.

Some consistency results:

» Easy: If E||X|| < oo and 7, > an for small enough 0 < o < 1, then
constrained k-means clustering is consistent.

» Harder: If E[| X| < oo and v, > (logn)?*, then constrained k-means
clustering converges to k’-means clustering for some 1 < k' < k.



IV. Future Work



Consistency:
» Computational considerations for k-barycenters clustering?

» Relative efficiency for convex surrogates of k-means clustering?

Inconsistency:
» Finer understanding of the Pareto(2) example?

» Precise cutoffs for ~, for consistency of balanced clustering?

Methodology:
» Other ways to impose balance constraints?

» How to interpret imbalance in practice?



Thank you!
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