Constrained denoising, empirical Bayes, and optimal transport

Adam Quinn Jaffe

With Nikolaos Ignatiadis and Bodhisattva Sen

Model for data:

$$\Theta \sim G$$
 and $Z = \Theta + \varepsilon$ where $\varepsilon \sim \mathcal{N}(0, \Sigma)$

where G is unknown distribution, and Σ is known likelihood variance.

Let $(\Theta_1, Z_1), \dots (\Theta_n, Z_n)$ be i.i.d pairs from above.

Goal is *denoising*, estimating latent variables $\Theta_1, \ldots, \Theta_n$ from the observed variables Z_1, \ldots, Z_n

Model for data:

$$\Theta \sim G$$
 and $Z = \Theta + \varepsilon$ where $\varepsilon \sim \mathcal{N}(0, \Sigma)$

where G is unknown distribution, and Σ is known likelihood variance.

Let $(\Theta_1, Z_1), \dots (\Theta_n, Z_n)$ be i.i.d pairs from above.

Goal is *denoising*, estimating latent variables $\Theta_1, \ldots, \Theta_n$ from the observed variables Z_1, \ldots, Z_n

Minimize risk:

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_i) - \Theta_i\|^2\right] \\ \text{over} & \delta: \mathbb{R}^m \to \mathbb{R}^m \end{cases}$$

Solution is the posterior mean:

$$\delta_{\mathcal{B}}(z) = \mathbb{E}[\Theta \,|\, Z = z].$$

Although $\delta_{\mathcal{B}}$ depends on G, we can try to approximate $\hat{\delta}_{\mathcal{B}}$ empirically.

Any $\delta : \mathbb{R}^m \to \mathbb{R}^m$ is called a *denoiser*, $\delta_{\mathcal{B}}$ is *oracle Bayes denoiser*, and $\hat{\delta}_{\mathcal{B}}$ is *empirical Bayes denoiser* (Robbins 1956, Efron 2019).

Shrinkage in $\delta_{\mathcal{B}}$ and $\hat{\delta}_{\mathcal{B}}$:

$$Cov(\Theta) = Cov(\delta_{\mathcal{B}}(Z)) + \mathbb{E}[Cov(\Theta \mid Z)] \succeq Cov(\delta_{\mathcal{B}}(Z)).$$

Sometimes want distributions of $\hat{\delta}_{\mathcal{B}}(Z_1), \ldots, \hat{\delta}_{\mathcal{B}}(Z_n)$ and $\Theta_1, \ldots, \Theta_n$ to be similar (Louis 1984, Ghosh 1992, Ghosh-Maiti 1999, Loredo 2007).

Not guaranteed from $\hat{\delta}_{\mathcal{B}}(Z_1), \dots, \hat{\delta}_{\mathcal{B}}(Z_n)$ estimating $\Theta_1, \dots, \Theta_n$ well!

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_i) - \Theta_i\|^2\right] \\ \text{over} & \delta: \mathbb{R}^m \to \mathbb{R}^m \end{cases}$$

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_i) - \Theta_i\|^2\right] \\ \text{over} & \delta: \mathbb{R}^m \to \mathbb{R}^m \\ \text{with} & \delta(Z) \stackrel{\mathcal{D}}{=} \Theta \end{cases}$$

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i})-\Theta_{i}\|^{2}\right] \\ \text{over} & \delta:\mathbb{R}^{m}\to\mathbb{R}^{m} \\ \text{with} & \mathbb{E}[\delta(Z)]=\mathbb{E}[\Theta] \\ \text{and} & \text{Cov}(\delta(Z))=\text{Cov}(\Theta) \end{cases}$$

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_i) - \Theta_i\|^2\right] \\ \text{over} & \delta: \mathbb{R}^m \to \mathbb{R}^m \\ \text{with} & \cdots \end{cases}$$

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_i) - \Theta_i\|^2\right] \\ \text{over} & \delta: \mathbb{R}^m \to \mathbb{R}^m \\ \text{with} & \cdots \end{cases}$$

Oracle solution?

How to approximate empirically?

Some previous work:

Oracle Bayes and empirical Bayes for variance constraints:

- ▶ Gaussian G in dimension m = 1 (Louis 1984)
- ▶ General G in dimension m = 1 (Ghosh 1992)
- ▶ Gaussian G in general dimension m (Ghosh-Maiti 1999)

Oracle Bayes for distribution constraints:

- ► Calculation of excess risk (Freirich 2021)
- ► Characterization of solutions (García-Trillos-Sen 2024)

- I. Problem Statement
- II. Oracle Constrained Bayes
- III. Empirical Constrained Bayes
- IV. Astronomy Application

II. Oracle Constrained Bayes

General constrained denoising problem:

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i}) - \Theta_{i}\|^{2}\right] \\ \text{over} & \delta: \mathbb{R}^{m} \to \mathbb{R}^{m} \\ \text{with} & \cdots \end{cases}$$

Rewrite the objective:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i}) - \Theta_{i}\|^{2}\right]$$

$$= \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i}) - \delta_{\mathcal{B}}(Z_{i})\|^{2}\right] + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta_{\mathcal{B}}(Z_{i}) - \Theta_{i}\|^{2}\right]$$
excess risk

Bayes risk

Distribution-constrained denoising problem:

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i})-\Theta_{i}\|^{2}\right] \\ \text{over} & \delta:\mathbb{R}^{m}\to\mathbb{R}^{m} \\ \text{with} & \delta(Z)\stackrel{\mathcal{D}}{=}\Theta \end{cases} \tag{\mathcal{DCB}}$$

$$\cong \begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i})-\delta_{\mathcal{B}}(Z_{i})\|^{2}\right] \\ \text{over} & \delta:\mathbb{R}^{m}\to\mathbb{R}^{m} \\ \text{with} & \delta(Z)\stackrel{\mathcal{D}}{=}\Theta \end{cases}$$

with
$$\delta(Z) \stackrel{\mathcal{D}}{=} \Theta$$

Approximately looks like a Monge transport problem from distribution of $\delta_{\mathcal{B}}(Z)$ to distribution of Θ , but with non-standard cost function.

Existence and uniqueness of solutions? How to solve in practice?

Theorem (García-Trillos-Sen, 2024)

Under suitable regularity conditions, if F and G denote the distributions of Z and Θ , respectively, then the problem

$$\begin{cases} \text{minimize} & \int \|\delta_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(F, G) \end{cases}$$

admits a unique solution, this solution is concentrated on the graph of a function $\delta_{\mathcal{DCB}}: \mathbb{R}^m \to \mathbb{R}^m$ which is the unique solution to the problem

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\|\delta(Z) - \Theta\|^2\right] \\ \text{over} & \delta : \mathbb{R}^m \to \mathbb{R}^m \\ \text{with} & \delta(Z) \stackrel{\mathcal{D}}{=} \Theta, \end{cases}$$
 (\mathcal{DCB})

and we have $\delta_{\mathcal{DCB}} = \nabla \phi \circ \delta_{\mathcal{B}}$ for some convex function $\phi : \mathbb{R}^m \to \mathbb{R}$.

Variance-constrained denoising problem:

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i})-\Theta_{i}\|^{2}\right] \\ \text{over} & \delta:\mathbb{R}^{m}\to\mathbb{R}^{m} \\ \text{with} & \mathbb{E}[\delta(Z)]=\mathbb{E}[\Theta] \\ \text{and} & \text{Cov}(\delta(Z))=\text{Cov}(\Theta) \end{cases}$$

$$\cong \begin{cases} \text{minimize} & \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\|\delta(Z_{i})-\delta_{\mathcal{B}}(Z_{i})\|^{2}\right] \\ \text{over} & \delta:\mathbb{R}^{m}\to\mathbb{R}^{m} \\ \text{with} & \mathbb{E}[\delta(Z)]=\mathbb{E}[\Theta] \\ \text{and} & \text{Cov}(\delta(Z))=\text{Cov}(\Theta) \end{cases}$$

Approximately looks like a Monge transport problem, but with non-standard cost function and one marginal partially-specified.

Gaussianization trick:

replace
$$\begin{cases} \delta_{\mathcal{B}}(Z) \leftarrow \mathcal{N}\left(\mathbb{E}[\delta_{\mathcal{B}}(Z)], \operatorname{Cov}(\delta_{\mathcal{B}}(Z))\right) \\ \delta(Z) \leftarrow \mathcal{N}\left(\mathbb{E}[\Theta], \operatorname{Cov}(\Theta)\right). \end{cases}$$

Then (\mathcal{VCB}) reduces to a Monge transport problem with non-standard cost function and with Gaussian marginals.

For $a, b \in \mathbb{R}^m$ and $A, B \succ 0$, consider

$$\begin{cases} \text{minimize} & \int_{\mathbb{R}^m} \|x - x'\|^2 d\pi(x, x') \\ \text{over} & \pi \in \Gamma(\mathcal{N}(a, A), \mathcal{N}(b, B)) \end{cases}$$

Unique solution (Olkin-Pukelsheim 1982) concentrates on graph of

$$\delta(x) = \mathbf{t}_A^B(x-a) + b$$

where

$$\mathbf{t}_A^B = A^{-1/2} (A^{1/2} B A^{1/2})^{1/2} A^{-1/2}.$$

If A, B commute, then $\mathbf{t}_{A}^{B} = B^{1/2}A^{-1/2}$.

Theorem (AQJ-Ignatiadis-Sen, 2025)

Under suitable regularity conditions, the problem

$$\begin{cases} \text{minimize} & \mathbb{E}\left[\|\delta(Z) - \Theta\|^2\right] \\ \text{over} & \delta : \mathbb{R}^m \to \mathbb{R}^m \\ \text{with} & \mathbb{E}[\delta(Z)] = \mathbb{E}[\Theta] \\ \text{and} & \text{Cov}(\delta(Z)) = \text{Cov}(\Theta) \end{cases}$$

admits a unique solution given by

$$\delta_{\mathcal{VCB}}(\,\cdot\,) = \mathbf{t}_{\mathrm{Cov}(\delta_{\mathcal{B}}(Z))}^{\mathrm{Cov}(\Theta)}(\delta_{\mathcal{B}}(\,\cdot\,) - \mathbb{E}[\Theta]) + \mathbb{E}[\Theta].$$

Extends some known special cases (Louis 1984, Ghosh 1992, Ghosh-Maiti 1999).

III. Empirical Constrained Bayes

Many known methods for achieving small value of

$$\frac{1}{n}\sum_{i=1}^{n}\|\hat{\delta}_{\mathcal{B}}(Z_i) - \delta_{\mathcal{B}}(Z_i)\|^2$$

when n large (Brown-Greenshtein 2009, Jiang-Zhang 2009, Soloff et al. 2024, Shen-Wu 2025, ...).

Can we do similar for $\hat{\delta}_{\mathcal{DCB}}$ and $\hat{\delta}_{\mathcal{VCB}}$?

Note we don't seek small overall risk, just comparable risk to the oracle.

Suffices to take an approximation $\hat{\delta}_{\mathcal{B}}$ of $\delta_{\mathcal{B}}$ and apply some further transformations to it!

Distribution constrained denoising?

Kantorovich-type problem:

$$\begin{cases} \text{minimize} & \int \|\delta_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(F, G) \end{cases}$$

$$\approx \begin{cases} \text{minimize} & \int \|\hat{\delta}_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(\bar{F}_n, \hat{G}_n) \end{cases}$$

Need:

Kantorovich-type problem:

$$\begin{cases} \text{minimize} & \int \|\delta_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(F, G) \end{cases}$$

$$\approx \begin{cases} \text{minimize} & \int \|\hat{\boldsymbol{\delta}}_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(\bar{F}_n, \hat{G}_n) \end{cases}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$,

Kantorovich-type problem:

$$\begin{cases} \text{minimize} & \int \|\delta_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(F, \mathbf{G}) \end{cases}$$

$$\approx \begin{cases} \text{minimize} & \int \|\hat{\delta}_{\mathcal{B}}(z) - \theta\|^2 \mathrm{d}\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(\bar{F}_n, \hat{\underline{G}}_n) \end{cases}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$, some \hat{G}_n approximating G,

Kantorovich-type problem:

$$\begin{cases} \text{minimize} & \int \|\delta_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(\mathbf{F}, G) \end{cases}$$

$$\approx \begin{cases} \text{minimize} & \int \|\hat{\delta}_{\mathcal{B}}(z) - \theta\|^2 \mathrm{d}\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(\bar{F}_n, \hat{G}_n) \end{cases}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$, some \hat{G}_n approximating G, and some \bar{F}_n approximating F.

Kantorovich-type problem:

$$\begin{cases} \text{minimize} & \int \|\delta_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(F, G) \end{cases}$$

$$\approx \begin{cases} \text{minimize} & \int \|\hat{\delta}_{\mathcal{B}}(z) - \theta\|^2 d\pi(z, \theta) \\ \text{over} & \pi \in \Gamma(\bar{F}_n, \hat{G}_n) \end{cases}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$, some \hat{G}_n approximating G, and some \bar{F}_n approximating F.

procedure DistributionConstrainedEB (Z_1, \ldots, Z_n)

input: samples Z_1, \ldots, Z_n **output:** denoising function $\hat{\delta}_{\mathcal{DCB}} : \{Z_1, \ldots, Z_n\} \to \mathbb{R}^m$ $\hat{\delta}_{\mathcal{B}}(\cdot) \leftarrow$ approximation of $\delta_{\mathcal{B}}(\cdot)$ $\hat{G}_n \leftarrow$ approximation of G $\hat{c}_n(Z_i, \eta) \leftarrow \|\hat{\delta}_{\mathcal{B}}(Z_i) - \eta\|^2$ for all $1 \leq i \leq n$ and $\eta \in \mathbb{R}^m$

$$\begin{array}{ll} \hat{\pi}_{\mathcal{DCB}} \leftarrow & \mathbf{minimize} \ \int_{\mathbb{R}^m \times \mathbb{R}^m} \hat{c}_n(z,\eta) \mathrm{d}\pi(z,\eta) \\ & \mathbf{over} & \mathrm{probability} \ \mathrm{measures} \ \pi \in \mathcal{P}(\mathbb{R}^m \times \mathbb{R}^m) \\ & \mathbf{with} & \pi(\{Z_i\} \times \mathbb{R}^m) = \frac{1}{n} \ \mathrm{for} \ \mathrm{all} \ 1 \leq i \leq n \\ & \mathbf{and} & \pi(\mathbb{R}^m \times \mathrm{d}\eta) = \hat{G}_n(\mathrm{d}\eta) \end{array}$$

$$\hat{\delta}_{\mathcal{DCB}}(Z_i) \leftarrow \int_{\mathbb{R}^m} \eta \, d\hat{\pi}_{\mathcal{DCB}}(\eta \mid Z_i) \text{ for all } 1 \leq i \leq n$$

return $\hat{\delta}_{\mathcal{DCB}}$

Theorem (AQJ-Ignatiadis-Sen 2025)

Suppose $\hat{\delta}_{\mathcal{B}}: \mathbb{R}^m \to \mathbb{R}^m$ satisfies

$$\frac{1}{n}\sum_{i=1}^{n}\|\hat{\delta}_{\mathcal{B}}(Z_i) - \delta_{\mathcal{B}}(Z_i)\|^2 = O_{\mathbb{P}}(\alpha_n),$$

and that \hat{G}_n satisfies

$$W_2(\hat{G}_n, G) = O_{\mathbb{P}}(\beta_n),$$

as $n \to \infty$. Then the denoiser $\hat{\delta}_{\mathcal{DCB}}$ described before satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \|\hat{\delta}_{\mathcal{DCB}}(Z_i) - \delta_{\mathcal{DCB}}(Z_i)\|^2 = O_{\mathbb{P}} \left(\alpha_n^{1/2} \vee \beta_n \right).$$

Rate of convergence of $\hat{\delta}_{\mathcal{DCB}}$ typically dominated by the slow rate of convergence of nonparametric deconvolution (Fan 1991).

Explicit formula for optimal denoiser:

$$\mathbf{t}^{\mathrm{Cov}(\Theta)}_{\mathrm{Cov}(\delta_{\mathcal{B}}(Z))}(\delta_{\mathcal{B}}(\,\cdot\,) - \mathbb{E}[\Theta]) + \mathbb{E}[\Theta]$$

$$\approx \mathbf{t}_{\mathrm{Cov}(\widehat{\delta_{\mathcal{B}}(Z)})}^{\widehat{\mathrm{Cov}(\Theta)}}(\widehat{\delta_{\mathcal{B}}}(\,\cdot\,) - \widehat{\mathbb{E}[\Theta]}) + \widehat{\mathbb{E}[\Theta]}$$

Need:

Explicit formula for optimal denoiser:

$$\mathbf{t}^{\mathrm{Cov}(\Theta)}_{\mathrm{Cov}(\delta_{\mathcal{B}}(Z))}(\underline{\delta_{\mathcal{B}}(\,\cdot\,)} - \mathbb{E}[\Theta]) + \mathbb{E}[\Theta]$$

$$\approx \mathbf{t}_{\widehat{\mathrm{Cov}(\delta_{\mathcal{B}}(Z))}}^{\widehat{\mathrm{Cov}(\Theta)}}(\widehat{\delta_{\mathcal{B}}}(\,\cdot\,) - \widehat{\mathbb{E}[\Theta]}) + \widehat{\mathbb{E}[\Theta]}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$,

Explicit formula for optimal denoiser:

$$\mathbf{t}^{\mathrm{Cov}(\Theta)}_{\underline{\mathrm{Cov}}(\delta_{\mathcal{B}}(Z))}(\delta_{\mathcal{B}}(\,\cdot\,) - \mathbb{E}[\Theta]) + \mathbb{E}[\Theta]$$

$$pprox \mathbf{t}_{\widehat{\operatorname{Cov}(\partial_{\mathcal{B}}(Z))}}^{\widehat{\operatorname{Cov}(\Theta)}}(\hat{\delta}_{\mathcal{B}}(\,\cdot\,) - \widehat{\mathbb{E}[\Theta]}) + \widehat{\mathbb{E}[\Theta]}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$, some $\widehat{\text{Cov}(\delta_{\mathcal{B}}(Z))}$ approximating $\widehat{\text{Cov}(\delta_{\mathcal{B}}(Z))}$,

Explicit formula for optimal denoiser:

$$\mathbf{t}^{\mathbf{Cov}(\Theta)}_{\mathrm{Cov}(\delta_{\mathcal{B}}(Z))}(\delta_{\mathcal{B}}(\,\cdot\,) - \mathbb{E}[\Theta]) + \mathbb{E}[\Theta]$$

$$pprox \mathbf{t}_{\mathrm{Cov}(\widehat{\Theta}_{\mathcal{B}}(Z))}^{\widehat{\mathrm{Cov}(\Theta)}}(\hat{\delta}_{\mathcal{B}}(\,\cdot\,) - \widehat{\mathbb{E}[\Theta]}) + \widehat{\mathbb{E}[\Theta]}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$, some $\widehat{\text{Cov}}(\delta_{\mathcal{B}}(Z))$ approximating $\widehat{\text{Cov}}(\Theta)$, some $\widehat{\mathbb{E}[\Theta]}$ approximating $\widehat{\mathbb{E}[\Theta]}$.

Explicit formula for optimal denoiser:

$$\mathbf{t}^{\mathrm{Cov}(\Theta)}_{\mathrm{Cov}(\delta_{\mathcal{B}}(Z))}(\delta_{\mathcal{B}}(\,\cdot\,) - \mathbb{E}[\Theta]) + \mathbb{E}[\Theta]$$

$$pprox \mathbf{t}_{\mathrm{Cov}(\widehat{eta}_{\mathcal{B}}(Z))}^{\widehat{\mathrm{Cov}(\Theta)}}(\hat{\delta}_{\mathcal{B}}(\,\cdot\,) - \widehat{\mathbb{E}[\Theta]}) + \widehat{\mathbb{E}[\Theta]}$$

Need: some $\hat{\delta}_{\mathcal{B}}$ approximating $\delta_{\mathcal{B}}$, some $\widehat{\text{Cov}}(\delta_{\mathcal{B}}(Z))$ approximating $\widehat{\text{Cov}}(\delta_{\mathcal{B}}(Z))$, some $\widehat{\text{Cov}}(\Theta)$ approximating $\widehat{\text{Cov}}(\Theta)$, and some $\widehat{\mathbb{E}[\Theta]}$ approximating $\mathbb{E}[\Theta]$.

procedure VarianceConstrainedEB (Z_1, \ldots, Z_n)

input: samples $Z_1, \ldots, Z_n \in \mathbb{R}^m$ output: denoising function $\hat{\delta}_{\mathcal{VCB}} : \mathbb{R}^m \to \mathbb{R}^m$

$$\hat{\delta}_{\mathcal{B}}(\,\cdot\,) \leftarrow \text{approximation of } \delta_{\mathcal{B}}(\,\cdot\,)$$

 $\hat{M} \leftarrow \text{sample covariance matrix of } \hat{\delta}_{\mathcal{B}}(Z_1), \dots \hat{\delta}_{\mathcal{B}}(Z_n)$ $\hat{\mu} \leftarrow \text{sample mean of } Z_1, \dots, Z_n$ $\hat{S} \leftarrow \text{sample covariance matrix of } Z_1, \dots, Z_n$ $\hat{A} \leftarrow (\hat{S} - \Sigma)_+$

$$\hat{\mathbf{t}} \leftarrow \hat{M}^{-1/2} (\hat{M}^{1/2} \hat{A} \hat{M}^{1/2})^{1/2} \hat{M}^{-1/2}
\hat{\delta}_{\mathcal{VCB}}(\cdot) \leftarrow \hat{\mathbf{t}} (\hat{\delta}_{\mathcal{B}}(\cdot) - \hat{\mu}) + \hat{\mu}$$

return $\hat{\delta}_{VCB}$

Theorem (AQJ-Ignatiadis-Sen 2025)

Suppose $\hat{\delta}_{\mathcal{B}}: \mathbb{R}^m \to \mathbb{R}^m$ satisfies

$$\frac{1}{n}\sum_{i=1}^{n}\|\hat{\delta}_{\mathcal{B}}(Z_i) - \delta_{\mathcal{B}}(Z_i)\|^2 = O_{\mathbb{P}}(\alpha_n),$$

as $n \to \infty$. Then the denoiser $\hat{\delta}_{\mathcal{VCB}}$ described above satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \|\hat{\delta}_{\mathcal{VCB}}(Z_i) - \delta_{\mathcal{VCB}}(Z_i)\|^2 = O_{\mathbb{P}}(\alpha_n)$$

as $n \to \infty$.

Rate of convergence of $\hat{\delta}_{VCB}$ as fast as rate of convergence of $\hat{\delta}_{B}$ (Jiang-Zhang 2009, Soloff et al. 2024, Shen-Wu 2025, ...)

Moment estimation in (\mathcal{VCB}) is easier than deconvolution in (\mathcal{DCB}) .

Other discussions in the paper:

- ► For general constraints: uniqueness, characterization, method for computation, rates of convergence, etc.
- ► Modifications for non-Gaussian likelihoods, and heteroskedasticity in the likelihood
- ► Some computational considerations

Notably not in the paper:

- ▶ Practically, how to choose between $\hat{\delta}_{\mathcal{B}}$, $\hat{\delta}_{\mathcal{DCB}}$, and $\hat{\delta}_{\mathcal{VCB}}$?
- ► Scalable computation for large data sets or high dimension?
- ▶ Lower bounds to show that the rates of convergence are sharp?

IV. Astronomy Application

Interested in n = 2000 stars in a given catalog.

For each star, measure the amount of nitrogen (N) and oxygen (O), relative to the amount of iron (Fe).

Latent relative abundances $\Theta_1, \dots, \Theta_n \in \mathbb{R}^2$ are i.i.d from unknown G.

Observations $Z_1, \ldots, Z_n \in \mathbb{R}^2$ have heteroskedastic additive Gaussian noise, but the likelihood covariances $\Sigma_1, \ldots, \Sigma_n$ are known

Thank you!

References

- L. D. Brown and E. Greenshtein. Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means. *Ann. Statist.*, 37(4): 1685-1704, 2009.
- B. Efron. Bayes, oracle Bayes and empirical Bayes. Stat. Sci., 34(2):177-201, 2019
- J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. $Ann.\ Statist.,\ 19(3):1257-1272,\ 1991.$
- D. Freirich, T. Michaeli, and R. Meir. A theory of the distortion-perception tradeoff in Wasserstein space. NeurIPS, 34:25661–25672, 2021.
- N. García-Trillos and B. Sen. A new perspective on denoising based on optimal transport. *Inf. Inference*, 13(4):iaae029, 2024.
- M. Ghosh. Constrained Bayes estimation with applications. J. Am. Stat. Assoc., 87(418):533-540, 1992.
- M. Ghosh and T. Maiti. Adjusted Bayes estimators with applications to small area estimation. Sankhya, 61(1): 71-90, 1999.
- W. Jiang and C.-H. Zhang. General maximum likelihood empirical Bayes estimation of normal means. Ann. Statist., 37(4):1647-1684, 2009.
- T. Loredo. Analyzing data from astronomical surveys: Issues and directions. Statistical Challenges in Modern Astronomy IV, 371:121-138, 2007.
- T. A. Louis. Estimating a population of parameter values using Bayes and empirical Bayes methods. J. Am. Sat. Assoc., 79(386):393–398, 1984.
- I. Olkin and F. Pukelsheim. The distance between two random vectors with given dispersion matrices. Linear Algebra Appl., 48:257-263, 1982.
- H. Robbins. An empirical Bayes approach to statistics. Berkeley Symp. on Math. Statist. and Prob., 3(1):157-163, 1956.
- Y. Shen and Y. Wu. Empirical Bayes estimation: When does g-modeling beat f-modeling in theory (and in practice)? Ann. Statist., to appear, 2025
- J. A. Soloff, A. Guntuboyina, and B. Sen. Multivariate, heteroscedastic empirical Bayes via nonparametric maximum likelihood. *J. R. Stat. Soc. B. Methodol.*, 87(1):1-32, 2024.