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Model for data:

0~G and Z =0 +¢ where € ~ N(0,X)
where GG is unknown distribution, and ¥ is known likelihood variance.
Let (©1,21),...(0y, Z,) be i.i.d pairs from above.

Goal is denoising, estimating latent variables O, ...,0,, from the
observed variables Z1,..., 2,
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Minimize risk:

minimize [E [% Yoy 16(2i) — ©ill?]
over 0:R™ — R™

Solution is the posterior mean:
op(z) =E[O]|Z = z].
Although 65 depends on GG, we can try to approximate 0B empirically.

Any § : R™ — R™ is called a denoiser, dp is oracle Bayes denoiser, and
6B is empirical Bayes denoiser
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Shrinkage in 0z and on:
Cov(0) = Cov(0p(Z)) + E[Cov(O | Z)] = Cov(dg(Z)).

Sometimes want distributions of 6g(Z1),...,05(Z,) and ©1,...,0, to
be similar

Not guaranteed from 55(21), . ,55(Zn) estimating ©1,...,0, welll



Add constraints:
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Add constraints:

minimize E [ Y (|6(Z;) — 6:]%]

n

over 6:R™ 5 R™
with

Oracle solution?

How to approximate empirically?



Some previous work:

Oracle Bayes and empirical Bayes for variance constraints:
» Gaussian G in dimension m = 1
» General G in dimension m =1

» Gaussian G in general dimension m

Oracle Bayes for distribution constraints:
» Calculation of excess risk

» Characterization of solutions
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II. Oracle Constrained Bayes



General constrained denoising problem:

minimize E[1 3", [6(Z;) — 6;?]
over 0:R™ = R™
with

Rewrite the objective:

ii 16(2) — o4l
n ‘ 7 7
Z 16(Zi) = 05(Z)|I?

+E

Z||5B

— 0,

excess risk Bayes risk



Distribution-constrained denoising problem:

minimize E[1 Y7, [6(Z;) — 6]

over J:R™ - R™ (DCB)
D

with }Z2)=0
minimize E [2 Y 16(Z) — 08(Z)|?]
=~ { over §:R™ — R™

with sz)2e

Approximately looks like a Monge transport problem from distribution
of 65(Z) to distribution of ©, but with non-standard cost function.

Existence and uniqueness of solutions? How to solve in practice?



Theorem (Garcia-Trillos-Sen, 2024)

Under suitable regularity conditions, if F' and G denote the
distributions of Z and ©, respectively, then the problem

minimize [ [|0g(z) — 0]|*dn(z,0)
over m e (F,G)

admits a unique solution, this solution is concentrated on the graph of a
function dpep : R™ — R™ which is the unique solution to the problem

minimize E [[|6(Z) — O]
over §:R™ - R™ (DCB)

with 5(z) 2 e,

and we have dpeg = V¢ o g for some convex function ¢ : R™ — R.
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Variance-constrained denoising problem:

minimize [E [% i 10(Z:) — @z‘HQ]

over 6:R™ — R™
with E[6(Z)] = E[O] (VeB)
and Cov(6(Z)) = Cov(O)

minimize [E [% S 16(Z;) — 5B(Zi)||2}

. )over 0:R™ - R™
] with E[6(Z)] = E[O]
and Cov(6(Z)) = Cov(O)

Approximately looks like a Monge transport problem, but with
non-standard cost function and one marginal partially-specified.



Gaussianization trick:
o 58(Z) — N (E[55(2)], Cov(d5(2)))
P 5(Z) «— N (E[B)], Cov(O)).

Then (VCB) reduces to a Monge transport problem with non-standard
cost function and with Gaussian marginals.



For a,b € R™ and A, B > 0, consider
minimize [, ||z — &'||*dn(z, 2')
over 7€' (N(a,A),N(b,B))
Unique solution concentrates on graph of
S(z)=th(z—a)+b

where

t8 = A7V(APBAYRY P AT,
If A, B commute, then tﬁ = B'2A,



Theorem (AQJ-Ignatiadis-Sen, 2025)

Under suitable regularity conditions, the problem

minimize E [H5( ) — 0| ]
over 0:R™ = R™

with E[0(2)] = E[©]

and Cov(6(Z)) = Cov(O)

admits a unique solution given by

dves(+) = tomis ) (05(+) — E[O]) + E[O].

Extends some known special cases
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I1I. Empirical Constrained Bayes



Many known methods for achieving small value of
1 n
- > l105(Zi) = 65(Z:)|1”
i=1

when n large

Can we do similar for 51)(;3 and SVCB?
Note we don’t seek small overall risk, just comparable risk to the oracle.

Suffices to take an approximation o5 of 63 and apply some further
transformations to it!
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procedure DistributionConstrainedEB(Z1, ..., Z,)

input: samples Z1,...,2Z,
output: denoising function opcp : {Z1,...,2,} = R™

dp(-) « approximation of dz( - )
G, + approximation of G

én(Zsym)  165(Zi) —n||? for all 1 < i < n and n € R™

Tpes < minimize [ pm Cn(2,1)d7(2, 1)

over probability measures m € P(R™ x R™)
with T({Z} xR™) =21 forall1<i<n
and 7(R™ x dn) = Gp(dn)

opcs(Z:i) < [amndipes(n| Zi) forall1 <i<n

return dpcs



Theorem (AQJ-Ignatiadis-Sen 2025)
Suppose o : R™ - R™ satisfies

fZHaB ) — 65(Z:)|I? = Op(awn),

and that Gy, satisfies
Wy(Gn, G) = Op(Bn),

as n — co. Then the denoiser SDCB described before satisfies
- Z 10pcB(Zi) — dpes(Z:)|)* = Op (04:1/2 v 5n) :

Rate of convergence of épeB typically dominated by the slow rate of
convergence of nonparametric deconvolution






o
5




1.0
0.51
0.01
-0.51
-1.0;




Opcs(Z;)




Variance constrained denoising?

Explicit formula for optimal denoiser:
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Variance constrained denoising?

Explicit formula for optimal denoiser:

Cov(©
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Variance constrained denoising?

Explicit formula for optimal denoiser:
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Variance constrained denoising?

Explicit formula for optimal denoiser:

Cov(©
tCOVEcsB)(Z))(‘SB( -) —E[©]) + E[O]

Cov(6 2 T T
~ 99 () —

Cov(05(2))

Need: some g approximating d, some Cov(dg(Z)) approximating

—

Cov(6p(Z)), some Cov(©) approximating Cov(©), and some E[O)]
approximating E[©].



procedure VarianceConstrainedEB(Z1,...,7,)

input: samples Z3,..., 7, € R™
output: denoising function dyep : R”™ — R™

~

0B(+) < approximation of og( )

M <+ sample covariance matrix of 65(Z1), . ..05(Zn)

[t < sample mean of Z1,..., 2,
S < sample covariance matrix of Zy,..., 72,

t« MV2(NMVANR) 2N
oven(+) < t(0p(+) — f1) + i1

return 51;5 B



Theorem (AQJ-Ignatiadis-Sen 2025)
Suppose o : R™ —» R™ satisfies

- Z 105(Z:) — 65(Z:)|1* = Op(am),
as n — 0o. Then the denoiser SVCB described above satisfies

- Z 10ves(Zi) — dves(Z:)|* = Op(an)

as n — oQ.

Rate of convergence of dy¢cp as fast as rate of convergence of dp

Moment estimation in (VCB) is easier than deconvolution in (DCB).
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Other discussions in the paper:

» For general constraints: uniqueness, characterization, method for
computation, rates of convergence, etc.

» Modifications for non-Gaussian likelihoods, and heteroskedasticity
in the likelihood

» Some computational considerations

Notably not in the paper:
» Practically, how to choose between 53, 51)(,’87 and 5yc5?
» Scalable computation for large data sets or high dimension?

» Lower bounds to show that the rates of convergence are sharp?



IV. Astronomy Application
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Interested in n = 2000 stars in a given catalog.

For each star, measure the amount of nitrogen (N) and oxygen (O),
relative to the amount of iron (Fe).

Latent relative abundances O1,...,0,, € R? are i.i.d from unknown G.

Observations Z1,. .., Z, € R? have heteroskedastic additive Gaussian
noise, but the likelihood covariances 31, ..., %, are known
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Thank you!
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