STAT GU4207 / GR5207 HOMEWORK #11

SPRING 2025

Assigned: Wed, Apr 9 Due: Fri, Apr 18

1. Let $\{X_t\}_{t\geq 0}$ be Gaussian process with mean function μ and covariance function Σ , and let $\theta : [0, \infty) \to \mathbb{R}$ be arbitrary. Then define

$$\tilde{X}_t = \int_0^t \theta(u) X(u) \mathrm{d}u.$$

for $t \ge 0$. Show that $\{\tilde{X}_t\}_{t\ge 0}$ is a Gaussian process, and find its mean function and covariance function.

- 2. For an any $k \ge 1$ and any function $\phi : [0, \infty) \to \mathbb{R}^k$, define the function $\Sigma(s, t) = \langle \phi(s), \phi(t) \rangle$ for all $s, t \ge 0$. Construct a centered Gaussian process $\{X_t\}_{t\ge 0}$ with Σ as its covariance function.
- 3. Let $\{X_t\}_{t\geq 0}$ be a cosine process with parameters $\sigma^2 > 0$ and $\lambda > 0$, meaning

$$X_t = \varepsilon_1 \cos(\lambda t) + \varepsilon_2 \sin(\lambda t)$$

for all $t \ge 0$, where $\varepsilon_1, \varepsilon_2$ are independent identically-distributed samples from $\mathcal{N}(0, \sigma^2)$. Show for all $k \ge 0$ that the kth derivative process $\{X_t^{(k)}\}_{t\ge 0}$ is a cosine process, and find its parameters.

4. For $v \in \mathbb{R}^2$ and $\theta > 0$, consider the following model for a particle in viscous fluid: We have $X_0 = 0 \in \mathbb{R}^2$, and

$$X_n - X_{n-1} = v - \theta(X_n - X_{n-1}) + \varepsilon_n$$

for $n \ge 1$, where $\varepsilon_1, \varepsilon_2, \ldots$ are independent, identically-distributed samples from $\mathcal{N}(0, \sigma^2)$ for $\sigma^2 > 0$. Find the conditional distribution of X_1 given $\{X_n = x\}$ for $n \ge 0$ and $x \in \mathbb{R}^2$.

- 5. Let $\{X_n\}_{n\geq 0}$ be a Gaussian random walk, meaning $X_0 = 0$ and $X_n = X_{n-1} + \varepsilon_n$ for $n \geq 1$, where $\varepsilon_1, \varepsilon_2, \ldots$ are independent, identically-distributed samples from $\mathcal{N}(0, \sigma^2)$. Also fix an integer $m \geq 1$.
 - (a) Find the conditional distribution of $\{X_n\}_{0 \le n \le m}$ given $\{X_m = 0\}$.
 - (b) Show that $\{X_n \frac{n}{m}X_m\}_{0 \le n \le m}$ has the distribution of (a).