STAT GU4207 / GR5207 HOMEWORK #13

 ${\rm SPRING}\ 2025$

Assigned: Wed, Apr 23 Due: Fri, May 02

1. Suppose $\{B_t\}_{t\geq 0}$ is a Brownian motion, and define the process $\{\tilde{B}_t\}_{t\geq 0}$ via

 $\tilde{B}_0 = 0$ and $\tilde{B}_t = tB_{1/t}$ for t > 0.

Show that $\{\tilde{B}_t\}_{t\geq 0}$ is a Brownian motion.

2. Suppose $\{B_t\}_{t\geq 0}$ is a Brownian motion, fix $\gamma > 0$, and define the process $\{X_t\}_{t\geq 0}$ via $X_t = e^{-\gamma t} B_{e^{2\gamma t}}.$

Show $\{X_t\}_{t\geq 0}$ is an Ornstein-Uhlenbeck process.

3. Suppose $\{B_t\}_{t\geq 0}$ is a Brownian motion, fix x, y > 0, and write $T := \min\{t \geq 0 : B_t \in \{-x, y\}\}$ for the time of the first exit from the region (-x, y). Use Donsker's theorem to show that

$$\mathbb{P}(B_T = -x) = \frac{y}{x+y}$$
 and $\mathbb{P}(B_T = y) = \frac{x}{x+y}$.

4. Suppose $\{B_t\}_{t\geq 0}$ is a Brownian motion and that $\{N_t\}_{t\geq 0}$ is a Poisson process such that $\{B_t\}_{t\geq 0}$ and $\{N_t\}_{t\geq 0}$ are independent. Now define the process $\{X_t\}_{t\geq 0}$ via

$$X_t = B_{N_t}$$

Show that $\{X_t\}_{t\geq 0}$ has stationary independent increments, but that it is not a Brownian motion.

5. Suppose $\{B_t\}_{t\geq 0}$ is a Brownian motion, and write $T_1 := \min\{t\geq 0 : B_t = 1\}$ for the first passage time to 1. Use the reflection principle to show that $\mathbb{E}[T_1] = \infty$.