STAT GU4207 / GR5207 HOMEWORK #6

SPRING 2025

Assigned: Wed, Feb 26 Due: Fri, Mar 07

1. (a) Suppose that N is a non-negative integer-valued random variable satisfying

 $\mathbb{P}(T > m \mid T > n) = \mathbb{P}(T > m - n)$

for all 0 < n < m. Show that there exists some $0 \le p \le 1$ such that T has a Geo(p) distribution on $\{0, 1, 2, \ldots\}$.

(b) Suppose that T is a non-negative continuous random variable satisfying

 $\mathbb{P}(T > t \mid T > s) = \mathbb{P}(T > t - s)$

for all 0 < s < t. Show that there exists some $0 \leq \lambda \leq \infty$ such that T has an $\text{Exp}(\lambda)$ distribution. (Here, we take the convention that a random variable T has distribution Exp(0) if $\mathbb{P}(T = \infty) = 1$ and has distribution $\text{Exp}(\infty)$ if $\mathbb{P}(T = 0) = 1$.)

2. Fix $\lambda > 0$ and suppose for each $n \ge 1$ that N_n has a $\text{Geo}(\lambda/n)$ distribution on $\{0, 1, 2, \ldots\}$, and that T is a random variable with an $\text{Exp}(\lambda)$ distribution. Show for all t > 0 that

$$\mathbb{P}(n^{-1}N_n > t) \to \mathbb{P}(T > t)$$

as $n \to \infty$. In other words, show that $n^{-1} \text{Geo}(\lambda/n)$ converges in distribution to $\text{Exp}(\lambda)$.

3. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate λ , fix $\alpha > 0$, and let T be a non-negative continuous random variable whose conditional distribution with respect to the process $\{N_t\}_{t\geq 0}$ is defined via

$$\mathbb{P}(T > t \mid N_t = k) = \alpha^k$$

for all t > 0 and $k \ge 0$. Find the marginal distribution of T.

- 4. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate λ , and let T be a random variable with distribution $\operatorname{Exp}(\mu)$ which is independent of $\{N_t\}_{t\geq 0}$. Find the distribution of N_T .
- 5. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate λ , and suppose that all arrived units incur a cost c > 0 per unit per time until they are removed. Suppose that, in periods of non-random length L > 0, all arrived units are removed and a total cost of r is incurred, regardless of the number of arrived units. What period length L > 0 minimizes the expected total cost per time, as a function of λ , c, and r?