STAT GU4207 / GR5207 HOMEWORK #7

SPRING 2025

Assigned: Wed, Mar 05 Due: Fri, Mar 12

- 1. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate $\lambda > 0$ and let S_1, S_2, \ldots denote its arrival times. Show, for each t > 0, that N_t and S_{N_t+1} are independent.
- 2. Suppose $\{N_t\}_{t\geq 0}$ is a Poisson process of rate $\lambda > 0$ with arrival times S_1, S_2, \ldots , and define the random variable

$$R_t = \begin{cases} t - S_{N_t} & \text{if } N_t \ge 1\\ t & \text{if } N_t = 0 \end{cases}$$

for all $t \geq 0$. Compute $\lim_{t \to \infty} \mathbb{E}[R_t]$.

3. Suppose that $\{N_t\}_{t\geq 0}$ is a Poisson process of rate $\lambda > 0$, let W_1, W_2, \ldots be IID continuous random variables with density f, and define

$$U_t := \sum_{k=1}^{N_t} \mathbf{1} \{ S_k + W_k > t \}.$$

Show that U_t converges to a Poisson distribution as $t \to \infty$, and find its parameter. (In other words, compute the limiting distribution of the $M/G/\infty$ queue.)

4. Let $\{N_t\}_{t\geq 0}$ be a Poisson process of rate $\lambda > 0$, let $Z_1, Z_2...$ be IID positive random variables with $\mathbb{E}[Z_k] = 1$ and $\operatorname{Var}(Z_k) = \sigma^2$, and define

$$V_t := \prod_{k=1}^{N_t} Z_k$$

Compute $Var(V_t)$.

5. Let $S_1, S_2, \ldots \in \mathbb{R}^2$ denote the points of a spatial Poisson point process in \mathbb{R}^2 with rate $\lambda > 0$, and let R_1, R_2, \ldots be IID positive random variables with a density f. Now let B_1, B_2, \ldots be a collection of random circles, where B_k has center S_k and radius R_k for all $k \geq 0$. Show that the total number of circles containing the origin has a Poisson distribution with parameter

$$2\pi\lambda\int_0^\infty r^2 f(r)\,\mathrm{d}r$$

(Hint: If S is a point selected uniformly at random in a circle of center 0 and radius 1, then the norm ||S|| is a continuous random variable with density $2\pi r$.)