STAT GU4207 / GR5207 HOMEWORK #9

SPRING 2025

Assigned: Wed, Mar 26 Due: never

- 1. Suppose that Q is a generator matrix and that a probability vector π is reversible for Q meaning $\pi_i Q_{ij} = \pi_j Q_{ji}$ for all states $i \neq j$. Show that π is stationary for Q.
- 2. Give an example of a continuous-time Markov chain with a unique stationary distribution that is not a stationary distribution for its embedded discrete-time Markov chain.
- 3. For $\kappa > 0$, the *Kimura 2-parameter model* is a continuous-time Markov chain on the state space $\{A, G, C, T\}$ with generator matrix given by

$$Q = \begin{pmatrix} -(\kappa+2) & \kappa & 1 & 1\\ \kappa & -(\kappa+2) & 1 & 1\\ 1 & 1 & -(\kappa+2) & \kappa\\ 1 & 1 & \kappa & -(\kappa+2) \end{pmatrix},$$

which represents mutation rates for nucleotides appearing in a DNA sequence. Show that this chain has a limiting distribution, and compute it.

- 4. For M > 0, consider the following three-chamber variant of the Ehrenfest gas model:
 - There are M particles distributed into three chambers called left, middle, and right.
 - The left chamber is adjacent to the middle chamber and the middle chamber is adjacent to the right chamber.
 - All particles move chambers according to independent processes of common rate $\lambda > 0$, and, when they move, they move uniformly at random to an adjacent chamber.

The number of particles in the left chamber is a continuous-time Markov chain denoted $\{X_t\}_{t\geq 0}$. Show that $\{X_t\}_{t\geq 0}$ has a limiting distribution, and compute it.

5. Consider an M/M/k queue with arrival rate $\lambda > 0$ and processing rate $\mu > 0$, for positive integer k. Show that this chain is ergodic if and only if $k\mu < \lambda$.